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A large number of scientific applications have now been implemented on parallel
supercomputers of the multiple processor, distributed memory, shared bus kind. Access to
such resources is limited to relatively a few sites. For many research groups the principal
computing resource is a small number of workstations accessed by a small user population.
Modern workstations can be quite powerful machines in their own right. Highly suitable as
they are in providing high peak performance and graphics visualisation capability they are not
always fully utilised. Consequently, ''spare" capacity goes begging during idle periods. ’

Recent developments in harnessing the power of independent computers have resulted in the
emergence of software tools which enable the parallel utilisation of workstation clusters of
different configuration, type, or even manufacture. Such a software harness is the PVM
package [1] which utilises a protocol for data and message passing between the workstations
over the network. The individual workstations constitute the elements of the parallel virtual
machine.

We have employed the PVM software to implement four programs of relevance to SAXS and
fiber diffraction work. The first uses the Debye formula to compute the structure factor of a
structure modelled by a number of spheres [2]. The CPU intensive part of the code computes
the histogram of pair distances from which the structure factor as well as the pair correlation
function, CF, and the radial distribution function, RDF, can be calculated as defined in [3].
Fig. 1 shows the computed SAXS, CF and RDF for a model of a gel network produced by
program GRASP [4].

The second program calculates the mass projection of a model structure for a series of
projection angles. It has been used in the past to produce mass projections of muscle fibre
models [5]. It is now being modified to read coordinates of any structure produced by any
model building program. The third computes the Fourier Transform of the mass projection
series to produce the simulated X-ray diffraction pattern [5]. The fourth program is a new
application under development for background subtracting experimental X-ray diffraction
patterns and computing the area under diffraction peaks. '

The first two programs have already been implemented on the Daresbury 64-node Intel
iPSC/860 hypercube [5]. The principal restriction arose out of the limited memory on each
processor (16MB), a significant handicap for processing large 2D images or for large sphere
models. Workstations, on the other hand, are usually equipped with larger memory. This
makes implementation significantly easier as there is no need to utilise temporary disk storage.

In all four cases we take the coarse-grain SIMD approach where identical copies of the
compute-intensive code are executed on each workstation but operate on different data. In the
first two cases the same dataset is read.in by all the processing nodes but each processor
operates on different subsets of the coordinates. In the last two cases each workstation
processes different datasets. Communication overheads are small compared to the total
processing time. Processing of the different chunks of data is independent of each other and no
synchronisation is necessary at intermediate stages of the calculation.

The small communication overheads result in almost ideal performance, i.e., processing time
is inversely proportional to the number of processors used. The slower processor determines
the overall rate. We can run the programs in a mixed environment of SUN, SG and HP
workstations. Even just a few nearly equally powerful machines can make a significant impact
on turnaround time. PYM also allows execution of the same code on multiprocessor,
shared—memory machines where parallelisation can be acheived by explicit compiler directives
and, in cases where the problem is sufficiently small, even on a single workstation.
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Figure 1. a) A section of a 2D model of a percolating gel network. The simulation conditions promote the growth of linear
polymers with occasional branching. b) The SAXS structure factor in log-log plot for a system of 10000 particles in 2D
at 40% vol/vol concentration. The slope of the linear section measures the fractal dimension of the system. ¢) The radial
distribution function (peak at r=1 truncated) and d) the correlation function up to 3 particle diameters.
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