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Introduction

When introducing users to the integration of fibre
diffraction intensities using the program LSQINT,
the following questions frequently arise:

1)  Does LSQINT apply the Lorentz correction?
i1) How does it do 1t?
ii1) What happens at the meridian?

The short answer is that it is all taken care of in the
profile calculation but perhaps further explanation
would be useful.

The Lorentz correction can be thought of as having
two components, the smearing out of Bragg-sampled
intensities into annuli due to cylindrical averaging of
the intensity transform and the oblique intersection
of these annuli with the sphere of reflection. The
latter component is dealt with by correct
transformation of the image into reciprocal space [1].
However, the first component of the correction still
requires attention and that is what is discussed here.

The model fibre

In general, the orientation of a three-dimensional
object is specified by three angles, two of which
define the orientation of the particle axis and one
which defines the orientation of the particle about its
own axis. An orientation distribution function (ODF)
describes the probability of finding a particle in a
given orientation. In an ideal fibre, the particles are
assumed to be the same size and cylindrical, with no
correlation between the positions of neighbouring
particles. The particle axes are distributed about the
fibre axis in a cylindrically symmetric manner and for
a given orientation of the particle axis, all orientations
about the axis occur with uniform frequency, so that
the orientation distribution function is dependent on
only one angle (figure 1). The particles might exhibit
one or three-dimensional crystallinity. Three
dimensional crystallinity results in a polycrystalline
fibre, giving rise to Bragg-sampled intensity.
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Figure 1: The diagram in (a) shows the angles used to describe
the orientation of a particle in three dimensions; the direction of
the particle axis is specified by @ and ¢, while the orientation of
the particle and its internal coordinate system about this axis is
specified by @. The diagram in (b) shows a representation of an
ideal fibre. All the particles constituting the fibre are cylindrical
and of the same size. All values of @ are equally likely, as are all
values of @, so that the orientation distribution function can be
written as function of ¢ alone.

Diffraction from a crystalline particle

A diffraction spot from a single particle will have a
breadth which is reciprocally related to the particle



size. In general, the Fourier transform of the shape
function of the particle S, (D). is convoluted with the
reciprocal lattice (D), to give the Fourier transform
of the finite lattice. This is then squared to give the
interference function, i.e.
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hu(D) on
each reciprocal lattice point do not overlap
significantly, this can be simplified [2] to
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For a cylindrical particle, the spot shape can be
modelled reasonably well with a Gaussian for the
spread in the Z direction and another Gaussian for
the radial spread, with widths w_and w,, respectively.
The particle intensity transform at a point in a
cylindrical coordinate system can now be written as,
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where D is a reciprocal space vector. If the §

lat

IR, W0 Z,)=———

where R’ =R +R'-2R Rcos(y,—y,) . The broadening

function has been normalized so that, in practice, it is
easy to compare integrated intensities from lattices
with different degrees of broadening.

This distribution of intensity can be cylindrically
averaged, consistent with the requirements of the
model that for a given orientation of the particle axis,
particles can be found with equal probability at any
orientation about that axis,
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This gives the equation for the cylindrically averaged
particle intensity transform (CAPIT),
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where €% (x)=1,(x), a modified Bessel function.

Here, the summation has been modified to be over
the unique intensities and a multiplicity, m,,
associated with each unique reflection has been
introduced. This arises as there is systematic overlap
of reflections (which are not necessarily symmetry
related) due to the cylindrical averaging (figure 2).

The cylindrical averaging performed above
implicitly provides the velocity component of the
Lorentz correction. Figure 3 shows the effect of the
averaging on the maxima of diffraction spots of three
different widths at varying radii. Curves
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Figure 2: The reflections are assumed to be of Gaussian cross-
section (the different sizes of the circles indicates that
cylindrical averaging may sum contributions from reflections
which are not symmetry related and so are of differing
intensity). (R, y,) are the coordinates of the lattice point and
(R,y,) is the point in the particle transform at which the
contribution of this lattice point is being considered. The
contribution at all points of equal radius must be summed to
obtain the cylindrically averaged particle intensity transform.

corresponding to 1/R scaled to match the curves
calculated from the CAPIT equation, are also shown
for comparison. It is clear that the fall-off of intensity
depends on the width of the spot. It is also clear that
the 1/R curve is a better approximation at smaller
widths at a given reciprocal radius or larger radii for
a given width. The meridian is well-behaved with the
averaging approach, the maximum of a spot having
the same value it would have if the particle were not
cylindrically averaged. This is of course not the case
when applying the 1/R curve, where the traditional
Lorentz correction breaks down completely.

How a point in the particle intensity transform
contributes to the specimen intensity transform

So far, only one component of the orientation
distribution function has been considered; the
cylindrical averaging of each particle about its own
axis. In order to calculate the specimen intensity
transform, the remaining components of the ODF are
convoluted with the intensity distribution from a
single particle. As the distribution of particle axes
about the fibre axis is cylindrically symmetric, only
the dependence on ¢ need be considered. This is
achieved by choosing the vector to the desired point
in the specimen intensity transform as the axis about
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Figure 3: This graph shows the effect of cylindrical averaging reflections. The Y axis is the peak intensity of the averaged
reflection as a fraction of its peak value in the three-dimensional particle coordinate system. The red, green and blue curves are the
result of applying the CAPIT equation to the situation where R, = R, between values of 0.0 and 0.5 on an arbitrary scale for
different widths of the Gaussian cross-section of the reflections. The three broken curves show the function 1/R scaled to match
the curves derived from the CAPIT equation. The coloured curves all intersect the Y axis at 1.0 indicating that meridional
reflections have the same peak value in the cylindrically-averaged intensity transform as they have in the three-dimensional

which to integrate (see figure 4). First we consider all
those particle axes which will make the same
contribution to this point in the specimen transform.
These particle axes will form a cone around the axis
of integration. We must multiply each point on the
base of the cone by the probability of finding a
particle axis at that orientation according to the ODF.
We can then integrate over all possible cones to
complete the convolution [3], i.e.,
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The effect of this convolution is to smear the
diffraction spots out into arcs. The extent of the arcs
modifies the Lorentz correction one would apply to
the peak intensity of the diffraction spot. In terms of
a traditional Lorentz correction, the fall-off of
intensity would go from being proportional to 1/R for
perfect orientation of the particle axes parallel to the
fibre axis to being proportional to 1/D” for powder
type disorientation where the particle axes are
randomly oriented with respect to the fibre axis.
Again, this correction is implicit in the above
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Figure 4: The convolution of the cylindrically-averaged
intensity transform with the remaining components of the
orientation distribution function (in @ and ¢) calculated at a
point (D,0,). All particles making the same contribution to this
point (i.e. all particles whose axes are ¢, away from the vector
D) are summed by integrating over &. The integration is then
performed over @,



convolution which deals comfortably with the
situation where broad diffraction spots lie close to
the meridian or the centre of the pattern.

Conclusion

If the traditional form of the Lorentz correction is
applied to diffraction spots on a point by point basis,
a good approximation to the profile calculation
described above is obtained when the spots are not
too close to the meridian. However, this method of
correcting spot intensities breaks down at the
meridian and works poorly where broad spots lie
close to the meridian. The method employed by
LSQINT naturally applies to these situations and also
provides an easy way of scaling together diffraction
spots of different widths, possibly from different
structures within the same specimen.
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Helical biological particles such as actin filaments
have been studied for many years by electron
microscopy and their structures have been
determined to about 20A to 30A resolution by 3-D
reconstruction from single images [1,2]. A big
advantage of electron micrographs is that they are
real space images of the objects being studied. If one
uses methods of reconstruction based on Fourier
transforms computed from digitized images, then
both amplitude and phase information can be
obtained. A single view of a helical object contains
many images of the repeating unit on the helix but

with different rotations around the helix axis.
Therefore, a single view is sufficient to reconstruct
the full helix in 3-dimensions. The main problems
with electron microscopy of such biological
filaments (often contrasted by using negative
staining methods) are that the resolution is usually
limited to about 20A and the amplitude data are
uncertain because of the contrast transfer function of

the electron microscope.

X-ray fibre diffraction studies from equivalent
systems can have the advantage that the diffraction
information can extend to about 10A and beyond
and, when properly stripped, the layer-line data
should be reliable. However, unlike electron
microscopy data, there is little phase information and
one cannot directly compute a 3-D reconstruction.
This paper discusses the combination, to 27A
resolution, of amplitudes from fibre X-ray diffraction
patterns of actin filaments labelled with myosin
heads (myosin S1) and phases determined from
electron microscopy. It also shows how the structure
might be refined to a resolution of at least 13;&, far
beyond current electron microscopy data, by
modelling using the lower resolution reconstruction
shown here as a starting point.

During muscle contraction, force and movement are
supposed to be produced by the interaction of the
globular heads of myosin molecules with adjacent,
helical, actin filaments. The myosin heads are known
as ATPases; they bind and can hydrolyse the
molecule adenosine triphosphate (ATP) to adenosine
diphosphate (ADP) and inorganic phosphate (Pi).
This hydrolysis is associated with the release of free
energy which is utilised to drive the generation of
force and movement. The myosin ATPase is rather
slow unless the myosin heads are interacting with
actin filaments. In the absence of ATP or ADP, the
myosin heads become rigidly attached to actin in the
so-called rigor complex. This occurs on death when
we stop making ATP and our muscles become ‘cross-
linked’, hence stff (rigor mortis sets in), by the
permanent binding of myosin heads to actin.

The myosin molecule is a long (1500A) coiled-coil
o-helical rod on one end of which are two myosin
heads. The myosin heads can be separated from the
rod by proteolysis, yielding individual, isolated,
heads known as myosin subfragment-1 (S1). Such
myosin S1 molecules can attach to isolated actin
filaments in the absence of ATP to form so-called
‘decorated” actin filaments, These have a




