discerning weak peaks in a high background as the
high gain can be offset to the required background
level.

The instrument has been developed to take advantage
of station 16.1 at the SRS, with the optimum detector
quantum efficiency (DQE) in the higher energy 16
keV range (see Figure 2). The tapers for the WAXS
detectors are 3.88:1 and for the SAXS it is 2:1. This
results in a slightly higher efficiency for the SAXS
detector (90%) than the WAXS detector (80%) at

16keV and 2x10* photons per pixel.

The SAXS detector can be moved from 0.27m to 3m
from the sample position. As the hole in the WAXS
mosaic is offset from the centre, the full quadrant
from the beam stop to 45° can be collected at the
0.27m position. A transparent beam stop will be
mounted before the SAXS detector for the collection
of normalisation data. The detector is designed to fit
seamlessly into the existing  Daresbury

instrumentation. This will allow the SAXS detector
to be replaced by the RAPID SAXS detector, if
required.

There has been an upgrade of the existing CCPI3
program, corfunc (T.M.W. Nye 1994), which can be
used to perform correlation function analysis of one-
dimensional small-angle scattering (SAXS) data.
corfunc is now driven by a Java-based graphical
user interface (GUI) and incorporates more robust
non-linear least-squares fitting. The GUI greatly
enhances the user-friendliness of the program and
also allows it to be run with greater efficiency and
flexibility. New interactive graphics allow corfunc to
be run independently of other programs such as
XOTOKQO. The program is provided to run on NT /
Windows, LINUX and various UNIX operating
systems.

1 Introduction
SAXS data can be subjected to correlation function

analysis in order to derive structural parameters
corresponding to the sample [1-2]. The correlation

Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK.

In normal operation, data will be written to a 20Gb
RAID ultra wide SCSI array allowing 2000 frames of
data to be collected, before downloading the NCD
file server. At slow frame rates, the full image of the
data can be sequentially displayed on the console. At
high frame rates, an area can be selected for
integration and the integrated count can be displayed.
For compatibility with the existing Daresbury set-up,
the detector will provide the cycle and group
functions as standard.

The data will be presented and saved with dark and
white-field corrections but without geometrical
corrections, allowing the user to select the preferred
geometrical corrections during data reduction. These
may be a transformation to reciprocal space or a flat
plate. The data correlating each pixel to angular
position, to allow these transformations to be
performed, will be stored separately from the data set
as is currently the case on existing equipment.

This detector is scheduled for delivery for January
2000 and should be available as a scheduled
instrument shortly afterwards.

function is simply the Fourier Transform of the
SAXS curve as shown in Figure 1.1. It is related to
the electron density distribution within the sample as
shown in Figure 1.2.

Figure 1.3 shows the structural parameters that can
be obtained by interpretation of the 1-D correlation
function. This interpretation assumes that the sample
has an ideal lamellar morphology, i.e. it assumes that
the sample consists of an ensemble of isotropically
distributed stacks of alternating crystalline and
amorphous lamellae. The stacks are assumed to be of
dimensions that are large enough not to affect the
small angle scattering.

2 The corfunc GUI

The Java-based GUI that drives the corfunc program
(see Figure 2.1) can be run on any Java 1.2 platform
or above (see http://www.javasoft.com). SAXS data
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Figure 1.1: (a) One-dimensional SAXS data, (b) One-dimensional correlation function calculated as the Fourier Transform of
the SAXS data using the corfunc program.
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Figure 1.2: Electron density distribution p(z) and its related correlation function I';(z) for lamellar systems of different regularity

[1]. (a) Periodic two-phase system. (b) The effect of long-spacing variations on (a). (¢) The effect of thickness fluctuations on (b).
(d) The effect of introducing diffuse phase boundaries to (¢). Symbols are described in the caption to Figure 1.3.




Extraction of ideal lamellar parameters firom
the one dimensional correlation function.
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Figure 1.3: One-dimensional correlation function analysis. Parameters obtained:
Long period = L,

Average hard block thickness = L.

Average core thickness = Dy

Average interface thickness = Dy,

Average soft block thickness = L, = [, - L,

Local crystallinity = ¢; = L./ L,

Bulk crystallinity = @ = Iy / (Uin + T7)

Polydispersity = I, / Tinax

Electron density contrast = (p,. - ,cia)2 = (/_‘\p)2 =Q0I* /(¢ (1 - ¢))
Specific inner surface = O, = 2¢/ L,

Non-ideality = (L, - L,*)* / L,

where Q = second moment or invariant

can be loaded in either OTOKO (see consecutively the three stages involved in the

http://www.srs.dl.ac.uk/NCD/computing/manual. correlation function analysis:

otoko.html) or ASCII format and are displayed as

shown in Figure 1.1. By editing the various input (i) extrapolation of the datato g =0and g = =
parameters (see Figure 2.2) and then selecting items (ii) calculation of the Fourier transform of the

from the Actions menu, the user can perform extrapolated data



(iii) interpretation of the correlation function
obtained in (i1)

The results of the analysis are displayed graphically
in pop-up windows or as scrolling text in the
message window. Graphs can be saved in several
common image formats. All results are also output to
OTOKO and/or ASCII format files. Help pages are
displayed in a platform-independent way using the
JavaHelp system.

8 Corfunc beta 1.0
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Figure 2.2: Input parameters

3 Data processing
3.1 Extrapolation of SAXS data

Prior to calculating the Fourier Transform of the
SAXS data, the data must first be extrapolated to g =
0 and g = = to avoid the introduction of series
termination errors in the transform.

3.1.1 Extrapolation to ¢ = «

Extrapolation to g = == is performed by fitting either
a Porod [3] or sigmoid [4] function to the tail of the
SAXS data. In corfunc, the “tail” of the data is taken
as those data lying between the two red limit markers
on the right of the SAXS data graph as shown in
Figure 3.1. These can be positioned interactively by
dragging them with the right-hand mouse button. If
these limits vary from frame to frame, in the case of
real-time data, variable tail limits can also be chosen

Tail-fitting functions:

I(q)=B+5¢ 7 Sigmoid
q

Hg)= B+£4 Porod
q

where B = Bonart thermal background

K = Porod constant

o describes the electron density profile at
the interface between crystalline and

amorphous regions.

The tail-fit affects the correlation function in the
most important region for the extraction of ideal
lamellar morphology parameters. Hence it is vital to
obtain a good fit to this tail.
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Figure 3.1: Selecting the fitting regions

3.1.2 Extrapolation to g = 0

The data are extrapolated to g = 0 by fitting a Guinier
or Vonk model to the first few genuine data points
after the beamstop. If the experimental data do not
increase in intensity as the beamstop is approached,
back extrapolation may fail. The first genuine data




point is indicated by the red limit marker on the left
of the SAXS data graph as shown in Figure 3.1. This
limit marker can be moved by dragging it with the
right-hand mouse button. The corfunc program will
attempt to set a sensible initial value for this limit.

Fitting functions for back-extrapolation:

I(g)=AeBd Guinier

I(g)= H, — Hyg” Vonk

3.1.3 Smoothing

The extrapolated data set consists of the Guinier or
Vonk back extrapolation up to the first genuine data
point, the original SAXS data up to the first tail-
fitting limit and the sigmoid or Porod tail beyond
this. It is shown as the magenta-coloured line in
Figure 3.2. The join between the original SAXS data
and tail-fit is smoothed using a Savitzky-Golay [5]
smoothing algorithm that smooths the data without
greatly altering higher moments. This avoids the
formation of ripples in the correlation function that
would occur with a period matching the d-spacing of
the join. No smoothing is used at the join of the back-
extrapolation to the SAXS data.
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Figure 3.2: Extrapolated data (magenta) superimposed on
the original SAXS curve (blue).

4 Calculating the correlation function

By selecting the Transform option from the Actions
menu, the user may calculate the one-dimensional
correlation function, I'; [2] (see Figure 1.1), the
second moment of the data [2], the interface
distribution function [7], and may re-transform I
back into a scattering curve for comparison with the
original data.

I, is given by:

Tj(q)q2 cos(gx)dg

I (x)= 0

where j(g) is the scattering intensity and Q is the
second moment or invariant of j(g) given by:

oo

0= i(a)a’dq

0

Every point in the extrapolated data set is used to
calculate each point on the correlation function. The
integration is numerical (a trapezium approximation)
and is performed up to g = 0.6. Together with the
fluctuations introduced by this truncation,
fluctuations are also introduced into the correlation
function by the finite gap between points in the
extrapolated data set.

The results of the transformation can be plotted by
selecting the required item from the Display menu.
In the case of the re-transformed correlation
function, it will be added to the background found
during the extrapolation process and superimposed
on the original SAXS data for comparison (see
Figure 4.1).
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Figure 4.1: The re-transformed 1-D correlation function
green) superimposed on the original SAXS data (blue).
5 Interpretation of the correlation function

The user may interpret the correlation function by
selecting the Extract parameters item from the



Actions menu. The correlation function is interpreted
in terms of an ideal lamellar morphology [7] and
structural parameters are obtained as shown in
Figure 1.3. It should be noted that a small beamsize
is assumed; no de-smearing is performed.

It is important to note that, according to Babinet’s
principle, in a two-phase structure such as the ideal
lamellar morphology, the electron densities of the
two phases (crystalline and amorphous) may be
interchanged without affecting the scattering curve
or correlation function [6]. Therefore, from
correlation function analysis alone, we cannot
distinguish between:

L.and L,
¢ and (1 - ¢)
pe and p,

and these parameters may be interchanged, also
affecting the other parameters derived from them.

It is also important to check that a horizontal section
exists in the first minimum of the 1-D correlation
function (-T,,;,) as shown in Figure 5.1. This
horizontal region is usually present when the sample
crystallinity is < 30 % or > 70 %. In the intermediate
region between 30 % and 70 % crystallinity, there
may be no horizontal section, and in this case, the
equation for the bulk crystallinity

Bulk crystallinity = ¢ = I, / (Lyin + 1)

no longer applies. In order to obtain reliable results
for this intermediate crystallinity, other data are
needed to complement the correlation function
analysis [6].

If a Porod profile was used for tail-fitting, Porod
analysis is performed after extraction of the lamellar
structure parameters. The parameters calculated by
the Porod analysis are given below:

Porod constant K
Surface to volume ratio = nK¢(1 - ¢) / Q
Characteristic chord length [, =40 / m K

Crystalline chord length =1, / (1 - ¢)
Amorphous chord length =1,/ ¢

where Q = second moment or invariant.

min

Figure 5.1: The 1-D correlation function shown in blue has a
horizontal section in the first minimum, yielding the bulk
crystallinity from the base line -I},;,. The first minimum of the
1-D correlation function shown in magenta has no horiziontal
section and the equation for bulk crystallinity given above no
longer applies.
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