
Page 1

EzcaFort User's Guide
Xingyue Li
December 7, 1995

1. Introduction

EzcaFort is an Interface between Fortran and the EZCA library which provides Fortran calls to EPICS
Channel Access.

Although there is nearly a one-for-one match between the routines in ezcaFort and those in the EZCA
library, the syntax of the ezcaFort routines is usually not the same as that of the EZCA routines. This is
because the EZCA is for C language instead of Fortran. Of course, if necessary one can consult EZCA
Primer
(http://www.aps.anl.gov/asd/controls/epics/manuals/EzCaPrimer/EzcaPrimer.html, or http://
www.aps.anl.gov/asd/controls/epics/manuals/EzCaPrimer/EzcaPrimer.ps).

This version of ezcaFort is just for Sun4 workstation using UNIX operating system.

2. Getting Started

2.1 Data Types

EzcaFort allows the user to read/write information in 6 different data types. Below are the allowable
ezcaFort data types.

 Data Type Corresponding Fortran Format

 BYTE CHARACTER*1 (the data should be between -128 and 127)
 STRING CHARACTER*L (L should be long enough)
 SHORT INTEGER*2
 LONG INTEGER*4
 FLOAT REAL
 DOUBL DOUBLE PRECISION or REAL*8

For example, if one wants to put 1, 2, 3, ..., 20 into a waveform named 'XLI:waveform' he can use the
following sentences.

 CHARACTER BT(20)
 INTEGER RET_CODE
 DO 10 I = 1, 20
 10 BT(I) = CHAR(I)
 CALL P_VALUE('XLI:waveform', 'BYTE', BT, 20, RET_CODE)
 IF(RET_CODE.NE.0)STOP ' PUTTING UNSUCCESSFULLY !!!'
 END

Here 'XLI:waveform' is the process variable which should be connected. 'BYTE' tells ezcaFort that BYTE
or CHARACTER*1 data type is being used. Since BT is of type character, the intrinsic function CHAR()
should be used.

Page 2

2.2 Makefile

Below is the Makefile used to make MYTASK.f.

EPICS = .
T_A=sun4
include $(EPICS)/config/CONFIG_BASE

BASE = /usr/local/epics/R3.12.1.4/base
EXTENSIONS = /usr/local/epics/extensions
USR_CFLAGS = -I$(EXTENSIONS)/include -g
USR_LDFLAGS = -L$(EXTENSIONS)/lib/sun4 -L$(BASE)/lib/sun4
USR_LDLIBS = -lezca -lca -lDb -lCom

OBJS = MYTASK.o ezcaFort.o

usr1: $(OBJS)
 f77 $(OBJS) $(USR_LDFLAGS) $(USR_LDLIBS)

include $(EPICS)/config/RULES.Unix

2.3 Arguments of EzcaFort

Arguments Meaning

S_NAME Process variable name, sometimes can be field name such as
'XLI:WAVEFORM1.SCAN'.

N_ELEM Number of elements in DATA_BUFF (If DATA_BUFF is not an array it should be 1).
DATA_BUFF Data buffer to store N_ELEM data of a given data type, can be an array, a string

or a single variable.
S_TYPE Type of DATA_BUFF, can be 'string', 'byte', 'short', 'long', 'float' and 'double.
I_STATU Return code. 0 represents successful call. Anything else indicates a problem.
D_LOW Low limit value.
D_HIGH High limit value.
I2_PRECISION Precision of the value of the process variable.
I_NANOSEC Nanoseconds within a second.
N_SECPAST Seconds since 0000 Jan 1, 1990.
I2_STATE Status code of G_STATUS().
I2_SEVERITY Severity code of G_STATUS().
S_UNITS Unit of the process variable. Its length should be at least 8 bytes.
S_PREFIX A user-supplied character string(possibly zero length, i.e. '') that EZCA will use as

prefix when displaying error message.
S_BUFF A user-supplied character string in which error message will be stored if an error

occurs.
I_RETCODE An array in which return codes of group elements will be stored.
I_SIZE Number of I_RETCODE. I_SIZE should be at least equal to the number of the

group elements which the user is interested in.
F_SECONDS Time in seconds.
I_RETRYCOUNT Retrycount, one of the two tunable parameters.

Note

Page 3

 1. "S_" means a character string. Both uppercase and lowercase can be used. The length of the string
should be long enough.

 2. "I_", "I2_" represent 4 bytes and 2 bytes integer numbers respectively. "N_" is the same as "I_" and
means "number of".

 3. "D_" and "F_" represent real*8 and real float point numbers respectively.

3. Main Subroutines

All routines in ezcaFort library are subroutines, so they should be called on using "call" syntax.

 Subroutines

G_VALUE(S_NAME, S_TYPE, DATA_BUFF, N_ELEM, I_STATUS)
P_VALUE(S_NAME, S_TYPE, DATA_BUFF, N_ELEM, I_STATUS)
G_CTRL_LIMITS(S_NAME, D_LOW, D_HIGH, I_STATUS)
G_GRAPH_LIMITS(S_NAME, D_LOW, D_HIGH, I_STATUS)
G_N_ELEM(S_NAME, N_ELEM, I_STATUS)
G_PRECISION(S_NAME, I2_PRECISION, I_STATUS)
G_STATUS(S_NAME, I_NANOSEC, N_SECPAST, I2_STATE,I2_SEVERITY, I_STATUS)
G_UNITS(S_NAME, S_UNITS, I_STATUS)

G_VALUE() gets value of the process variable or the field. The result is written into DATA_BUFF.
P_VALUE() writes the value in DATA_BUFF into the process variable or the field. Below is an example.

 character*40 nm
 integer*2 s1, s2 ! SHORT is integer*2 in SUN Workstation
 nm = 'XLI:testAI.DISV' ! 'XLI:testAI' should be connnected.
 call g_value(nm, 'short', s1, 1, ireturn)
 if(ireturn.eq.0)then
 write(*,200)s1
 write(*,205)
 read(*,*)s2
 call p_value(nm, 'Short', s2, 1, ireturn)
 call g_value(nm, 'Short', s1, 1, ireturn)
 write(*,210)s1
 else
 stop ' Something is wrong with g_value()!'
 endif
 nm = 'XLI:testAI'
 call g_value(nm, 'FLOAT', f1, 1, ireturn)
 write(*,220)f1
 write(*,225)
 read(*,*)f2
 call p_value(nm, 'float', f2, 1, ireturn)
 call g_value(nm, 'float', f1, 1, ireturn)
 write(*,230)f1
 stop ' Okey'
 200 format(/10x, 'XLI:testAI.DISV =', i2)
 205 format(/10x, 'Input new value for field DISV: ',$)
 210 format(/10x, 'New XLI:testAI.DISV =', i2)
 220 format(/10x, 'XLI:testAI = ', f7.2)
 225 format(/10x, 'Input new value for XLI:testAI: ',$)

Page 4

 230 format(/10x, 'New XLI:testAI =', f7.2)
 end

In this document, G_ and P_ always mean "get" and "put", respectively. So G_CTRL_LIMITS() gets
control limits, G_GRAPH_LIMITS() graphic limits. If someone wants to know how many elements there
are in a given process variable, he can use G_N_ELEM(). Any one can guess the purposes of
G_PRECISION(), G_STATUS() and G_UNITS().

4. Error Handling

 Subroutines

E_MESSAGE_ON()
E_MESSAGE_OFF()
ERR_PREFIX(S_PREFIX)
G_ERR_STRING(S_PREFIX, S_BUFF, I_STATUS)

By default, if an error occurs EZCA will dispaly error messages. The user can toggle this automatic error
reporting feature with E_MESSAGE_ON() or E_MESSAGE_OFF(). The default state is ON. When an
error occurs, ERR_PREFIX() uses S_PREFIX as a prefix to the error message. Meanwhile
G_ERR_STRING() puts the optional prefix and the error message into a usr-supplied string S_BUFF. In
both ERR_PREFIX() and G_ERR_STRING(), S_PREFIX can be zero length, i.e. ''.

Because ezcaFort is just an interface between Fortran and EZCA, when something is wrong the
dispalyed error message is issued by EZCA instead of ezcaFort. In these circumstances, the user should
check his/her ezcaFort call. EzcaFort just gives one kind of warning such as "Argument 2 of g_value() is
not available!!!" if such an error occurs.

5. Groups

 Subroutines

GROUP_ON(I_STATUS)
GROUP_OFF(I_STATUS)
GROUP_REPORT(I_RETCODE, I_SIZE, I_STATUS)

Sometimes it is more efficient to do a large block of unconditional reads and/or writes in a group. In these
circumstances, ezcaFort merely checks the validity of arguments of each ezcaFort main
subroutine(described in Section 3) call. The actual work is postponed until the end of the group is
encountered. If something in the group is wrong GROUP_OFF() returns the first encountered
unsuccessful return code. Since GROUP_REPORT() returns I_SIZE return codes, users interested in
the return status of all the ezcaFort calls should use it.

Not all programs should use ezcaFort groups. The following is an example which is a poor candidate for
groups.

 integer*2 svalue(2)
 data svalue/10, -21/
 call E_MESSAGE_OFF()
 call GROUP_ON(I_STATUS)

Page 5

 call G_VALUE('myai', 'float', fvalue, 1, i_status)
 if(fvalue.lt.0.0)call p_value('mywaveform', 'short',
 # svalue, 2, i_status)
 call GROUP_OFF(I_STATUS)
 if(i_status.ne.0)call ERR_PREFIX('')
 end

In this program, CALL P_VALUE() will never be executed since the value in variable FVALUE is garbage.

6. Monitors

 Subroutines

MONITOR_ON(S_NAME, S_TYPE, I_STATUS)
MONITOR_OFF(S_NAME, S_TYPE, I_STATUS)
MONITOR_CHECK(S_NAME, S_TYPE, I_STATUS)
DELAY(F_SECONDS, I_STATUS)

If the user has a process variable whose value will not change very often but will be read frequently, then
the user should establish an monitor on that process variable. By using MONITOR_ON() and
MONITOR_OFF, the user can place and remove monitors at any time.

Calling MONITOR_ON() immediately establishes a CA monitor of the specified request type on the
named process variable. Any time the value of the process variable changes (presumably infrequently)
the new value is cached automatically and silently. All subsequent reads of that process variable under
that request type will not generate a CA read, but rather, will simply read the cached value. Obviously,
this is more efficient.

When MONITOR_CHECK() is called on, it returns a non-zero value if there is a new (unread) value in
the monitor, otherwise it returns 0. This function is particularly useful when the read operation is
expensive in time, e.g., reading large arrays.

DELAY() should be called whenever monitors are used and there is a substantial amount of time
between any two adjacent ezcaFort calls since under these circumstances it is possible to lose changes
in variables. Between all such pair of calls, the user should call DELAY(). Usually, the value of argument
F_SECONDS should be around 0.01 seconds.

7. Tunnig EZCA

 Subroutines

G_TIMEOUT(F_SECONDS)
G_RETRYCOUNT(I_RETRYCOUNT)
P_TIMEOUT(F_SECONDS)
P_RETRYCOUNT(I_RETRYCOUNT, I_STATUS)

In these four subroutines, arguments F_SECONDS and I_RETRYCOUNT are used to determine when to
stop waiting for connections and confirmations of reads and writes. EZCA uses them by waiting
F_SECONDS seconds and then, if necessary, waiting F_SECONDS seconds a maximum of
I_RETRYCOUNT more times, resulting in a maximum total timeout time of F_SECONDS*(1 +

Page 6

I_RETRYCOUNT).

Empirically, under normal circumstances EZCA can reliably process(read or write) 200 process variables
per second. The default value for F_SECONDS and I_RETRYCOUNT are 0.05 seconds and 599 times,
respectively. So the default maximum total timeout is 30 seconds. If necessary, users should adjust
F_SECONDS and I_RETRYCOUNT accordingly.

