Skeletal Muscle X-ray Diffraction at BioCAT

Weikang Ma
Illinois Institute of Technology, Chicago IL

Mouse skeletal muscle XRD in BioCAT

DOI 10.1002/14356007.a12_319

Muscle X-ray pattern

Equatorial reflections

The $I_{1,1}/I_{1,0}$ intensity ratio will be correlated to the number of attached cross-bridges

Concerns

 $I_{1,1}/I_{1,0}$ indicates how close of myosin heads to actin

But, close proximity doesn't mean bind to actin

- In frog muscle, $I_{1,1}/I_{1,0}$ indicates about 90% of myosin heads are in the vicinity of thin filament (Haselgrove, 1973; Huxley, 1985)
- But less than 30% of these myosin head binds to actin (Matsubara, 1975; Huxley, 1982; Huxley, 1985).

The discrepancy between $I_{1,1}/I_{1,0}$ and the number of crossbridges attached make the interpretation of problematic.

$I_{1,1}/I_{1,0}$ in mouse skeletal muscle

A linear relationship in equatorial intensity change to applied tension

Consistent with studies on cardiac muscle: intensity ratio correlates well with tension especially during the early phase of contraction

Thin filament based reflections

You could measure the thin filament extensibility from these reflections

Tn/Tm reflections

When the muscle is activated

$$I_{Tn3} \sim 18\%$$

TM repeat 38.7 nm in a relaxed muscle

When the muscle is activated

19.3nm LL intensified

You could measure the intensity and the width of Tm reflection

Myosin filament based reflections

• MLL1: Helically ordered myosin heads

• M3: Intensity primarily from myosin heads

• M6: Intensity primarily from myosin backbone: The thick filament extensibility can be measured from M6 and higher meridional reflections

E. P. Debold. Biological machines: Molecular motor teamwork

Myosin filament based reflections

- The layer line intensity distribution is on the basis of Bessel function
- The distance between the first maximum layer is reversely related to the average myosin heads radius (R_m)

SRX by Muscle X-ray Diffraction

MLL came from ordered myosin heads

• SRX was characterized structurally the heads are folded back on to its own coiled-coil S2 tail

• Smaller R_m when shifts more myosin heads to SRX

Trivedi, et al 2018 Biophys Rev

Proximal S2

❖ Increased MLL intensity and/or smaller average myosin heads radius and changes in equatorial intensity ratio could be indicators of SRX in X-ray diffraction under stable temperature.

MLL4 intensity Vs Tension

- MLL4 intensity residue is inversely related to applied tensions.
- MLL4 intensity residue can be used to estimate the number of myosin heads move when muscle was activated.

Time-Resolved X-ray

Static shots at resting and plateau regions

• Take movie shots the whole time

at up to 500Hz

Activation

Relaxation

Relaxation

- Activation/contraction had been heavily studied
- Relaxation studies were much less
 - Maeda 1983 *Nature*
 - Brunello et al 2009 J Physiol

- MLL1: Helically ordered myosin heads
- Indicator of myosin heads ON/OFF

• Timing when MLL1 coming back after contraction can be used to study relaxation

Conclusion

If you have mouse/rat models or reagents:

- Change thin/thick filament extensibility
- Change Tn/Tm movement
- Change activation/relaxation kinetics
- Study SRX state

grant area

Nature. 2005 Jan 20;433(7023):330-4.

Molecular dynamics of cyclically contracting insect flight muscle in vivo.

Dickinson M¹, Farman G, Frye M, Bekyarova T, Gore D, Maughan D, Irving T.

Cool systems

Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):120-5. doi: 10.1073/pnas.1014599107. Epub 2010 Dec 9

X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle.

Perz-Edwards RJ¹, Irving TC, Baumann BA, Gore D, Hutchinson DC, Kržič U, Porter RL, Ward AB, Reedy MK

Cool ideas

Science. 2013 Jun 7;340(6137):1217-20. doi: 10.1126/science.1229573. Epub 2013 Apr 25.

The cross-bridge spring: can cool muscles store elastic energy?

George NT¹, Irving TC, Williams CD, Daniel TL.

For every hypothesis, there is a perfect critter out there to test it (With apologies to August Krogh)

Acknowledgement

BioCAT

Director: Tom Irving

Dr. Srinivas Chakravarthy

Dr. Jesse Hopkins

Ms. Carrie Clark

Mr. Richard Heurich

Mr. Mark Vukonich

University of Washington

Dr. Mike Regnier

Dr. Vicky Yuan

Dr. Jason Murray

University of Arizona

Dr. Henk Granzier

Dr. EJ Lee

Dr. Balazs Kiss

Dr. Frank Li

Dr. Johan Lindqvist

Dr. Coen Ottenheijm

University of Massachusetts

Dr. Roger Craig

Dr. Kyounghwan Lee

Supported by NIH P41 GM103622