

Benefits of APS-U and other planned developments on the BioCAT SAXS program

Jesse Hopkins, PhD IIT/CSRRI Deputy Director, BioCAT Sector 18, APS

March 15, 2022

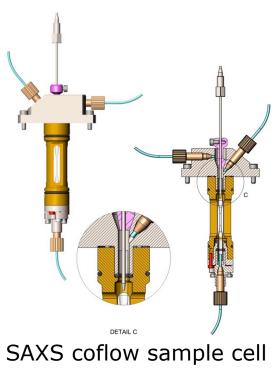
APS-U by the numbers

• Overall:

BioCA

- 3x increase in flux, to ~5*10¹³ ph/s
- 8x increase in flux density
- More symmetric beam with reduced horizontal size
- Equilibrium SAXS:
 - 6x increase in flux
 - 6x increase in flux density
- Time resolved SAXS:
 - 5-10x increase in flux
 - ~25x increase in flux density
 - More symmetric microbeam, 4x4 μ m²

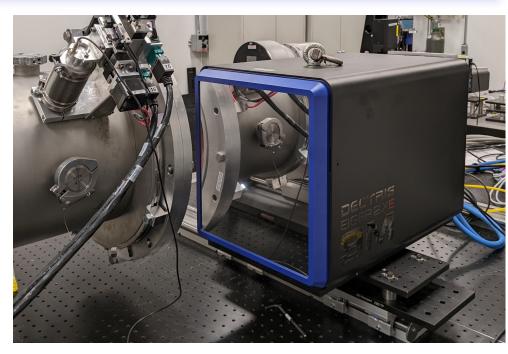
	Flux (ph/s)	Beam size (µm²)	Microbeam flux (ph/s)	Microbeam size (µm²)
Now	1.5e13	30 x 140	2e12	4 x 20
APS-U	5e13	30 x 30	1e13	4 x 4


APS-U Benefits

- For all experiments:
 - Greater total flux and flux density will yield better signal to noise
 - Improved beam stability for more reliable baselines
- For equilibrium SAXS:
 - Reduced beam size in the horizontal should allow smaller beam stops, lower minimum q
- For TR-SAXS:
 - Smaller beam will allow earlier first time points
 - Improved signal to noise will allow reduction in sample consumption

APS-U Challenges

- Radiation damage
 - Increased flux density means a greater chance at radiation damage to samples
- For equilibrium SAXS, existing coflow sample cell should prevent radiation damage in most cases
 - The coflow geometry has been shown to be effective at preventing damage with up to ~10x greater flux than we will have post APS-U (Nigel Kirby, private communication)
 - Certain buffers are more prone to damage, addition of radical scavengers such as glycerol can be used to mitigate



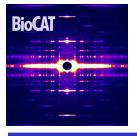
- For TR-SAXS, may see significant damage with full beam
 - Can mitigate with faster scanning/flow
 - Addition of radical scavengers necessary
 - Possible re-design of mixers to include a sheath flow similar to the coflow cell (e.g. Pollack & Doniach, 2009)

BioCAT

Recent SAXS improvements

- Eiger2 XE 9M detector
 - Larger area gives wider q range (currently q~0.42, planned q~0.5 1/A)
 - Smaller pixels given improved sampling in the low q (e.g. Guinier) region
 - Continuing high reliability
- Smaller beam stop
 - Minimum q improved from ~0.0045 to ~0.003 1/A

- Automated processing pipeline
 - Data reduced on the fly, initial analysis results (through bead models) available within ~5 minutes of end of experiment
 - Users no longer need to work with images, reducing overall data storage and transfer needs


Recent SAXS improvements

- Temperature control from ~5-50 C for SEC-SAXS and SEC-MALS-SAXS
- Availability of Ion-Exchange chromatography coupled SAXS (IEC-SAXS) and routine analysis for IEC-SAXS
- Routine deployment of laminar flow mixer for TR-SAXS
 - Time ranges from ~1 ms to 1.5 s, very low sample consumption
- Improved control software and scanning hardware for TR-SAXS, allowing for simple and reliable operation of all experiments
- Upgraded fluid delivery systems for TR-SAXS, to improve ease of operations and efficiency

Planned upgrades

- APS-U dark period gives us time to do some major upgrades that might otherwise take away from user experimental time
- Overhaul/replacement of many major beamline systems for another 20+ years of reliable operation:
 - Vacuum systems
 - Cryogenic system
 - Motor controllers
 - Backend experiment control software
 - Networking
- Improvement to vacuum systems in experimental hutch to reduce background, allow lower minimum q values

Planned upgrades

- New custom FPLC for SEC-SAXS to replace AKTA Pure
 - Fully integrated into beamline control software, allowing full automation of sample measurement, buffer changes
- Design goals:
 - Continuous unattended overnight running for SEC-SAXS samples
 - Full, automated temperature control from 4-50 C
 - In-line full spectrum UV measurement that also calibrates sample concentration in SAXS cell
 - Metal free sample flow path

Planned upgrades

- New batch mode autosampler
 - For samples where volume or concentration are insufficient for SEC-SAXS
- Design goals:
 - Direct loading into coflow cell to avoid dilution of sample
 - Loaded volumes as small as 10 uL
 - Fully automated loading for use with standard 96 well plates
 - Fully unattended running of batch mode samples