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Advanced topics 4: Flexible systems and intrinsically disordered proteins
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Unfolded and disordered proteins

Das, Ruff, & Pappu
(2015) Curr Op Str Biol
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Relevance:

« Does protein folding typically initiate with a rapid hydrophobic collapse?

« ~1/3 of the proteome is intrinsically disordered: IDP(roteins), IDR(egions)
* Folding upon binding

* phase separation & disease

« Is water a good or poor solvent for proteins?




Scattering: compact versus unfolded polypeptides
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Rescaling to remove size but keep shape information:

Dimensionless Kratky Plot

Debye formula for random walk:
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More on scaling and shape

IDP in water and high denaturant concentration

Standard log-log plot Dimensionless log-log plot Dimensionless Kratky Plot
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Shapes are different — but how?



Useful examples from globular to unfolded
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Normalized Kratky plots. The scattering pattern of jglobular proteins in a normalized Kratky plot exhibits a bell-shaped profile with a clear maximum value of 1.104 for ng=\/3,

|regard1ess of the size of the protein, and are all nearly superimposable in the q range 0<ng<3| Conversely, for a random chain, the curve rises with increasing angle, to nearly reach a
plateau between 1.5 and 2 and may further increase at g>0.2-0.3 A-!, depending on the persistence length and the internal structure of the protein. Bell-shaped profile of a globular

protein (PolX, blue line); curve of a protein consisting of several domains tethered by linkers with rather compact conformations (p47ph°x, dotted green line) or extended conformations
(p67ph°X, continue red line); curve of a fully disordered protein with very short elements of secondary structure (XPC dotted grey line); and curve of a fully disordered and extended
protein with short segments of polyproline repeats (salivary protein IB5, continue purple line).

Receveur-Brechot, V. and D. Durand, How random are intrinsically disordered proteins? A small angle
scattering perspective. Curr Protein Pept Sci, 2012. 13(1): p. 55-75.



Examples of mixed systems
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Examples of mixed systems

I(a)

(shapes, Fit)
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Scattering from Random Walks (allowed to cross)

and self-avoiding RW (not allowed to cross)

Debye formula for random walk:
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Molecular Form Factors (MFF)

describe shape of objects

E.g., ellipsoid, axial ratio

Standard Log-log plot Dimensionless Kratky Plot
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Molecular Form Factors (MFF)

describe shape of objects

E.g., ellipsoid, axial ratio

Can we generatea |
. 3| MFF for disordered
o polymers?
— T

qR, qR,



Allometry and scaling laws in Biology

General form for a biological variable for animals
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Polymer Physics: scaling laws and Flory exponent v

Good and poor solvents

Solvent quality: Flory exponent v
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Polymer Physics: scaling laws and Flory exponent v

Solvent quality: v

Good and poor solvents
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General scaling behavior of proteins
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() Scaling of radius of gyration (Rg) with chain length N for folded proteins based on ~2,400 nonredundant structures taken from
PDBSELECT?2S (50). While the radius of gyration shows reasonable agreement with v,,, & 0.33, the end-to-end distance shows a
poor correlation (inset). (b) Scaling behavior for chemically denatured proteins based on data from Reference 74. The unfolded state
under strongly denaturing conditions is well described by a self-avoiding random chain (v,pp & 0.59).

Holehouse & Pappu (2018)
Annual Review Biophysics



Obtaining a MFF for disordered polymers
Polymer Physics: scaling laws and Flory exponent v

Good and poor solvents

Debye formula for random walk
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Can we generate a general
MFF for realistic polymers?



Simulations generate ensembles used to make an MFF

Vary CB—Cp interaction
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Simulations generate ensembles used to make an MFF

Change CB—Cp interaction

4.
i v Rq
0.59 66
- 055 53
oz &
vir) = (A) 0.45 39
S
LI IIII 1 LILLIL IIII 1 1
10 100
li-j|
Dimensionless Kratky Plot
) .
‘Z:B, 1 ‘%{g Molecular Form
A N Factor (MFF) for
| V * expanded polymers
] %
0 T T T T | T T T T g
0 5 10
aRy




MFF for disorder systems:

Obtain R; and v from a single SAS measurement
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How well does it work?

Riback et al. Science 2017




How well does our MFF work?

PNt, 334 residue, low charge hydrophobic IDP
P. Clark (U Notre Dame)
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Measuring R, and v for an IDP using the MFF
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Riback et al. Science 2017



Scattering from Random Walks (allowed to cross)

and self-avoiding RW (not allowed)

Dimensionless Kratky plot Debye formula for random walk:
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Website for fitting disordered polymers

http://sosnick.uchicago.edu/SAXSonIDPs
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