SEC-SAXS data collection and analysis

Steve Meisburger, Cornell University Everything BioSAXS 7 (BioCAT) March 30, 2021

Entroduction

SAXS with in-line chromatography

Why use SEC-SAXS?

Pros

- Exact buffer match
- Remove aggregates
- Confirm monodispersity
- Separate mixtures
- Computationally deconvolve overlapping peaks

- Usually uses more material, takes longer, dilutes the sample
- Buffer is fixed (no titrations)
- Protein concentration varies (issue for weak complexes)
- Radiation damage can
 compromise experiment

Cons

Timeline of developments in SEC-SAXS

Size exclusion chromatography (SEC) setup

"Size exclusion chromatography: Principles and Methods", GE Healthcare Life Sciences.

beads

running buffer

Physical separation by SEC

- Large objects are excluded \rightarrow run quickly / elute first
- Small objects diffuse in the pores \rightarrow run slowly / elute last

"Size exclusion chromatography: Principles and Methods", GE Healthcare Life Sciences.

column

Reading a chromatogram

"Size exclusion chromatography: Principles and Methods", GE Healthcare Life Sciences.

Globular proteins elute according to log(MW)

"Size exclusion chromatography: Principles and Methods", GE Healthcare Life Sciences.

Column choice for in-line SAXS

GE superdex 10/300, 3.2/300, 5/150

Shodex KW series

Property	Options	Considerations
Volume	analytical scale (2.4-24 mL)	 smaller: less dilution, less sample needed. larger: faster flow, less peak broadening.
Length	typ. 150-300 mm	 longer: better resolution, TPN ("theoretical plate number") shorter: faster flow
	Polymer / sugar (GE superdex, superose)	Common for protein purification.Chemical compatibility
weata	Polymer-coated SiO ₂ (Shodex KW)	 Small bead size → better resolution. Buffer pH < 7.5
	500-5000 kDa (superose 6)	Choose range appropriate for
MW range	10-600 kDa (superdex 200)	sample of interest. Given range is for globular
	3-70 kDa (supderdex 75)	proteins.

SEC-SAXS experimental setup

FPLC (AKTA Purifier at CHESS G1)

Procedure for data collection

Further analysis

II: Basic Analysis

Example SEC-SAXS dataset Bovine Serum Albumin (BSA)

Experimental details

Beamline	CHESS G1, Nov. 2015
Sample	BSA at 11 mg/mL in 50 mM HEPES, pH 7.5
Column	Superdex 200 Increase, 3.2/300
Running Buffer	50 mM HEPES pH 7.0, 100 mM NaCl, 5% glycerol
Injection Volume	50 uL
Flow Rate	0.1 mL/minute
Frames	1000 at 2s each

3

Example SEC-SAXS dataset Bovine Serum Albumin (BSA)

Experimental details

Beamline	CHESS G1, Nov. 2015
Sample	BSA at 11 mg/mL in 50 mM HEPES, pH 7.5
Column	Superdex 200 Increase, 3.2/300
Running Buffer	50 mM HEPES pH 7.0, 100 mM NaCl, 5% glycerol
Injection Volume	50 uL
Flow Rate	0.1 mL/minute
Frames	1000 at 2s each

.5	3

Troubleshooting

Issue	Possible Causes	Exp
SAXS profile does not return to baseline	Capillary fouling (X-ray damage)	 Attenuate beam or clo Buffer additives to red Increase flow rate (mate)
	Sloping baseline	 Fully equilibrate colum
Rg not constant across peak	Interparticle interference	 Reduce injection volur
	Overlapping peaks	 (See below)
Overlapping	Insufficient resolution	 Verify column health u Choose a different column Reduce injection volumn Optimize buffer compared association of protein
peaks	Peak broadening	 Use a larger column, b column and X-ray cell
	Re-equilibration of oligomers / aggregation	 Optimize conditions (p

Issues can also be addressed computationally, using more advanced analysis

erimental solutions

- se shutter during aggregate peak uce damage (3% glycerol, etc) y require larger column)
- n with running buffer (~2 c.v.)
- me or use larger column
- sing calibration standard.
- umn.
- me.
- onents (pH, salt) to reduce non-specific with media.
- bypass sensors (UV, cond. etc) between

oH, additives, temperature) for stability

Example of capillary fouling (severe)

Pérez & Vachette in Biological Small Angle Scattering: Techniques, Strategies and Tips.183–199 (Springer, 2017)

III: Advanced Analysis

Theory of SAXS from mixtures Intensities add in dilute solution

SAXS profiles combine linearly \rightarrow use methods from linear algebra to deconvolve

Singular value decomposition (SVD) Method to factor a matrix into components First used in SAXS by Chen, Hodgson, & Doniach. J. Mol. Biol. 261, 658–671 (1996).

Using SVD to select a single component

Basis vectors from SVD are usually non-physical

SEC-SAXS, SVD

Sample: Bio-rad chromatography standard (thyroglobulin, γ-globulin, ovalbumin, myoglobin, vitamin B12)

- Cols. of V (concentration) go negative
- Cols. of V have multiple peaks
- Cols. of U (SAXS profiles) have negative intensity

First 7 basis vectors

SVD vs. time shows when new components elute

Evolving factor analysis (EFA) A powerful method for analyzing the time-dependent SVD

First described in: Maeder, M. (1987) Analytical chemistry, 59(3), 527-530.

"Forward evolving factors" = singular value spectrum as components are added

Inflection points occur whenever a new component elutes from the column.

Evolving factor analysis (EFA)

"Reverse evolving factors" = singular value spectrum as components are removed

Inflection points occur whenever a component "leaves" the scattering volume.

Evolving factor analysis (EFA)

"Peak Windows" are determined on the "first in, first out" principle

Final step: basis rotation

Rotate Basis

(Least-squares minimize residual outside peak windows)

Concentrations

SAXS profiles

Analysis in BioXTAS RAW

SVD

EFA

Hopkins, J. B., Gillilan, R. E. & Skou, S. J Appl Crystallogr 50, 1545–1553 (2017).

Advanced Applications and Methods

SAXS with Anion-Exchange **Chromatography (AEX)**

- Ribonucleotide reductase (RNR) from B. subtilis
- Co-purified with endogenous ligand, dAMP, and separated into two peaks by AEX (holo / apo)
- Performed AEX-SAXS
- Introduced new deconvolution method (REGALS)
- SAXS data + modeling -> holo peak corresponds to new structure (noncanonical dimer).

Parker, M. J. et al. PNAS 115, E4594–E4603 (2018).

SEC-SAXS of membrane proteins

- Detergent often used to solubilize membrane proteins.
- Causes problems for conventional SAXS:
 - Detergent corona scattering ~ protein scattering
 - Free micelles form spontaneously, scatter
- Studied aquaporin-0 solubilized in n-Dodecyl β-D-maltoside (DDM). Structure known from crystallography.
- SEC-SAXS was used to equilibrate detergent concentration and separate excess free micelles.
- Modeling detergent corona around aquaporin-0 produced good agreement with experiment.

Berthaud, Pérez, & Mangenot. JACS 134, 10080-8 (2012).

Coflow system for highflux data collection

- "Capillary fouling" (X-ray damage) is a particular problem at high-flux beamlines.
- Compromises data quality (although some programs can correct for it)
- Coflow system envelops sample stream in buffer sheath, so protein never touches the Xray windows.
- Enables increased X-ray flux, both for regular and SEC-SAXS.

Ryan et al. J Appl Cryst 51, 97–111 (2018). Kirby et al. Acta Crystallogr D 72, 1254–1266 (2016).

In-line Multi-Angle Light Scattering (MALS)

- SEC-MALS provides accurate MW readout during elution.
- Highly complementary to SAXS
- Several user facilities now offer SEC-MALS-SAXS, including:
 - APS (US), BioCAT ullet
 - CHESS (US), ID7A ightarrow
 - ALS (US), SIBYLS ullet
 - Petra III (Germany), EMBL (P12) ightarrow
 - Diamond (UK), B21 ightarrow
- Sample preparation, column media, and equilibration have more stringent requirements.

https://www.wyatt.com/solutions/techniques/sec-malsmolar-mass-size-multi-angle-light-scattering.html

SEC-SAXS-MALS setup at BioCAT

SEC-MALS of BSA and Hemoglobin

MALS+DLS and **Refractive Index (RI)** instruments (Wyatt)

REGALS = "REGularized Alternating Least Squares"

- EFA fails if peaks are highly igodoloverlapping, or if background changes (AEX-SAXS)
- REGALS modeling adds new peak and concentration models to deconvolve physically meaningful components
- Also works on time-resolved SAXS and equilibrium titrations.
- Try it yourself!
 - https://github.com/andolab/regals
 - GUI in development (Jesse Hopkins)

Parametric curves model components in REGALS

Meisburger, S.P., Xu, D. & Ando, N. (2021) IUCrJ 8(2).

REGALS separates **AEX-SAXS** dataset on BsRNR:

Summary

- SEC can separate molecules based on size
- SEC-SAXS is great at removing aggregates, separating oligomers, providing a good buffer match, and increasing overall confidence in data.
- SEC-SAXS typically requires extra sample, time
- Take care: experimental variables, assess data quality
- Powerful deconvolution methods (SVD, EFA, REGALS, ...)
- Exciting technical developments underway.

Acknowledgements

Questions?

Nozomi Ando Lab at Cornell http://ando.chem.cornell.edu/ Twitter: @AndoLab GitHub: github.com/ando-lab/

Cornell University.

Funding GM117757 (SPM) GM100008 (NA) GM124847 (NA)

SEC-SAXS at user facilities in the US

Facility, Beamline	Link	Modes	Chromatography system	Columns
CHESS, BioSAXS/ HP-Bio (ID7A)	<u>https://</u> <u>www.chess.cornell.edu/</u> <u>users/biosaxs-hp-bio-</u> <u>beamline</u>	SEC-SAXS, SEC-MALS- SAXS; High pressure (HP) SEC-SAXS.	Akta Pure FPLC (4 deg C), WYATT MALS, HPLC pumps for HP mode.	User-supplied columns; GE Superdex 200 10/300; GE Supderdex 200 5/150
APS, BioCAT (18ID)	<u>https://</u> <u>www.bio.aps.anl.gov/</u> <u>pages/about-saxs.html</u>	SEC-SAXS, SEC-MALS- SAXS. Coflow.	Akta Pure FPLC (4-50 degC), Agilent 1260 series, Wyatt MALS, QELS, RI	User-supplied columns; GE Superdex 200 Increase 5/150 and 10/300; GE Superdex 75 Increase 10/300 and 5/150; GE Superose 6 Increase, 10/300
ALS, SIBYLS (12.3.1)	https://bl1231.als.lbl.gov/ htsaxs/instructions/ secsaxs	SEC-MALS- SAXS	Agilent 1260 series HPLC, Wyatt MALS, QELS, RI	Shodex KW-802.5; Shodex KW-803; Shodex KW-804
SSRL, SMB (4-2)	https://www- ssrl.slac.stanford.edu/ smb-saxs/content/ documentation/sec-saxs	SEC-SAXS	Thermo Fisher Scientific UltiMate 3000 UHPLC, RI	User-supplied columns; Superdex 200 Increase PC 3.2/300; Superdex 75 PC Increase 3.2/300; Superose 6 Increase PC 3.2/300
NSLS-II, LiX (16-ID)	https://sites.google.com/ view/lixbeamline/	SEC-SAXS	Shimadzu HPLC (column box at 15-30 degC), UV and RI.	User-supplied columns; GE Superdex 200 Increase 5/150; GE Superdex 200 10/300 GL;

SEC-SAXS at user facilities outside the US

Facility, Beamline	Link	Modes	Chromatography system	Columns
Australian Synchrotron, SAXS/WAXS	https://www.ansto.gov.au/user- access/instruments/australian- synchrotron-beamlines/saxs-waxs	SEC-SAXS. Coflow.	Shimadzu HPLC, (column box at 6-60 degC)	User-supplied columns;
Petra III (Germany), EMBL (P12)	<u>https://www.embl-hamburg.de/</u> <u>biosaxs/sample.html#sec</u>	SEC-MALS- DLS-SAXS	Agilent 1260 Infinity Bio-Inert HPLC/FPLC (ambient temp.), Wyatt MALS, QELS, rEX, DLS	User-supplied columns; GE Superdex 200 Increase 10/300 and 5/150; GE Superdex 75 Increase 10/300 and 5/150; GE Superose 6 Increase 10/300 and 5/150; Wyatt WTC-015S5; Wyatt WTC-030S5;
Diamond (UK). B21	<u>https://www.diamond.ac.uk/</u> Instruments/Soft-Condensed- Matter/small-angle/B21.html	SEC-SAXS, SEC-MALS- SAXS	Agilent 1200 HPLC, Wyatt MALS	GE Superdex 200 3.2/300; GE Superose 6 3.2/300; Shodex KW-402.5; Shodex KW-403; Shodex KW-404; Shodex KW-405;
SOLEIL (France), SWING	<u>https://www.synchrotron-soleil.fr/</u> <u>fr/lignes-de-lumiere/swing</u>	SEC-SAXS	Agilent HPLC	User-supplied columns; Agilent Bio-Sec 3-300; Agilent AdvBioSec 2.7-300; Agilent BioSec 5-1000; Agilent BioSec 5-2000;
ESRF (France), BM29	http://www.esrf.eu/home/ UsersAndScience/Experiments/ MX/About_our_beamlines/bm29/ beamline-setup/hplc.html	SEC-SAXS	Shimadzu HPLC	

References

Торіс	
Review	 Pérez, J. & Vachette, P. A Successful Combination: Coupling Scattering: Techniques, Strategies and Tips. 183–199 (Spring
Ion exchange- SAXS, REGALS	 Parker, M. J. et al. An endogenous dAMP ligand in Bacillus s noncanonical dimer for regulation by dATP. PNAS 115, E459 Hutin, S., Brennich, M., Maillot, B. & Round, A. Online ion-ex scattering. Acta Crystallogr D Struct Biol 72, 1090–1099 (207) Meisburger, S.P., Xu, D. & Ando, N. (2021) <i>REGALS</i>: a generative volving mixtures. <i>IUCrJ</i> 8(2).
Coflow	 Ryan, T. M. et al. An optimized SEC-SAXS system enabling a correlated UV measurements for biomolecular structure anal Kirby, N. et al. Improved radiation dose efficiency in solution Acta Crystallogr D Struct Biol 72, 1254–1266 (2016).
EFA	 Meisburger, S. P. et al. Domain Movements upon Activation of Crystallography and Chromatography-Coupled Small-Angle Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: impro- angle X-ray scattering data reduction and analysis. J Appl Coupled Science of the second state of the second
US-SOMO	 Brookes, E., Vachette, P., Rocco, M. & Pérez, J. US-SOMO F and extraction of pure component patterns from poorly resol (2016).
Membrane Proteins	 Berthaud, A., Manzi, J., Pérez, J. & Mangenot, S. Modeling E Small-Angle X-ray Scattering. JACS 134, 10080–10088 (2012)
SVD	 Chen, L., Hodgson, K. O. & Doniach, S. A Lysozyme Folding Scattering. Journal of Molecular Biology 261, 658–671 (1996)

SE-HPLC with SAXS. in Biological Small Angle ger, 2017).

ubtilis class Ib RNR promotes assembly of a 4–E4603 (2018).

change chromatography for small-angle X-ray 16).

al method to deconvolve X-ray scattering data from

high X-ray dose for rapid SAXS assessment with ysis. J Appl Cryst 51, 97–111 (2018).

SAXS using a sheath flow sample environment.

of Phenylalanine Hydroxylase Characterized by X-ray Scattering. JACS 138, 6506–6516 (2016).

ovements to a free open-source program for smallrystallogr 50, 1545–1553 (2017).

HPLC-SAXS module: dealing with capillary fouling lived SEC-SAXS data. J Appl Cryst 49, 1827–1841

Detergent Organization around Aquaporin-0 Using 2).

Intermediate Revealed by Solution X-ray 5).