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The scattering profile



Scattering from a single
molecule

Images from Richard Gillilan’s BioSAXS Essentials presentation
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Images from Richard Gillilan’s BioSAXS Essentials presentation
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Images from Richard Gillilan’s BioSAXS Essentials presentation



Scattering from a single
molecule

in phase

Difference in path length = phase shift

Waves scattered from different parts of the molecule
result in phase shifts — a speckled intensity pattern on
detector

Far-field diffraction pattern

Images from Richard Gillilan’s BioSAXS Essentials presentation



Scattering from molecules in
solution

in phase

Incoming plane waves

Difference in path length = phase shift

Since molecules are far apart in dilute solutions, the
idealized scattering pattern of the solution is the same as

the scattering pattern for a single rotationally-averaged
molecule.

Far-field diffraction pattern

Images from Richard Gillilan’s BioSAXS Essentials presentation



The scattering profile is the intensity as a
function of “q”, the special reciprocal space
coordinate that is proportional scattering

angle at small angles. I(q)

g=4rsin(0)/A (< 0 for small 0)

Slide from Richard Gillilan’s BioSAXS
Essentials presentation

Intensity

I(q) is obtained by
integrating around the
circle. For detectors, the
standard deviation of
signal o(q) is also
calculated.



The scattering profile

1(q) < Mc(p; — p2)°IF(@)]*S(q)

I1(q) — Experimental intensity
M - molecular weight
c — concentration
p — scattering density (electrons per unit volume)
p, - particle
p, - solvent
F(q) - Form factor, i.e. molecular shape
S(q) — Structure factor, i.e. inter-molecular interaction

~ 1 for dilute solutions
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E=sam A typical SAXS experiment

Beamstop Sample Source
Detector  protein Solution Protein
¢ g
2 2
2 2
g 5
= =

g=4msinf/ A q



« Data is collected as 2D images

« 2D images are radially averaged to 1D scattering profiles,
I(q)

«  Multiple profiles collected for both sample and buffer are
averaged

« Averaged buffer profile is subtracted from averaged sample
profile to create a single subtracted scattering profile

« This subtracted scattering profile is the basic data form in
SAXS



Summary of the scattering
profile

I(q)

Scattering profile exists in reciprocal space, q has units of
1/distance (usually 1/A or 1/nm)
. Big things scatter more at low g, small things more at high g

. Low q contains overall size and shape, mid to high q contain finer
structure (tertiary, secondary structure)

Scattering profile represents the scattering from a
rotationally averaged macromolecule in solution

q dependence in scattering profile comes from molecular
shape and molecular interactions
. Important to eliminate interactions to learn about shape
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s PlOtting the scattering profile

Same profile, three different plots

Lin-lin

Log-lin

Log-log
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s PlOtting the scattering profile

Same profile, three different plots

Lin-1j Log-lin Log-log

I(a)
I(a)
I(a)

10-24

Profile covers 3-4 orders of magnitude. A linear y axis hides significant features

Log-lin emphasizes mid to high g (shape), log-log emphasizes low q (size)



What can go wrong with
vour data



What can go wrong with your
data

. Poor quality sample

. Aggregates or unexpected oligomers in solution
. Oligomeric state doesn’t match expectations
. Complex didn’t form

. Radiation damage

. Unexpected time dependent changes in the measured profile
. Usually manifests as time dependent aggregation

. Concentration effects (structure factor)
. Concentration dependent changes in the measured profile
. Upturn (attraction) or downturn (repulsion) at low g

. Bad buffer subtraction
. Bad buffer match
. Capillary fouling
. Profile going negative at high g or low g (over subtraction)
. Profile offset at high g, uptick at low q (under subtraction)



Aggregation

-— Unaggregated
1071 —— Aggregated
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Radiation damage

I(q)




I(a)

Interparticle Interaction

- Lysozyme, 5 mg/ml
- Lysozyme, 28 mg/ml
— Lysozyme, 47 mg/ml

102

107!



Interparticle Interactions

c t IF@I* 1t S@ L (@

-lQ:) X —

g \' ‘I\\/

< n

c 1 F@P 4 S@ oy 1@

3

?% ’ % —

m ~ n

Image from a talk by Thomas Grant



Subtraction errors

103 4

10~

I(q)

10— 4

- Correct
- Buffer 3% high
— Buffer 3% low

102 107!



Importance of data validation

. SAXS is a low information content measurement

. Even ‘bad’ SAXS samples provide signal
. SAXS samples should be homogeneous and monodisperse

. Because you always get a result, and because it's easy to overfit SAXS
data, validating that you have measured good data is extremely

important

. Basic analysis methods for SAXS both verify data quality and provide
useful information on the system
. Guinier fit
. M.W. calculation

. Porod/Krakty plots
. IFT/P(r) function



Guinier analysis



Guinier analysis

« As g - 0, intensity can be approximated by:

1(q) = 1(0)e~7 R3/3

R, - radius of gyration (size)
I(0) - scattering at zero angle (M.W related)

»  Plot log(!) vs. ¢?: slope = —RZ/3, intercept = log(1(0))
Fit the Guinier region to find these parameters

— Guinier region

In(I(a))

0.0




Guinier analysis

Radius of gyration:
« RMS distance from center of mass

-~ Rg-Radius resulting from rotating lysozyme about its center of mass

Ry, - Hydrodynamic Radius (Stokes' radius)

R,,- Hypothetical radius of sphere with lysozyme’ s mass and density

R, - Radius of Gyration

Useful definitions of Ry

>
g I, ——
: RS = NZIIn —Tcomll® by atoms
‘—26A4'(
R =i Y I =7l by atom
I TN - DL LTI BY.
i pairs

_ by electron 1 .
Ré —JV r2p(r)dr/jv p(r)dr density Rﬁ — Ef rzp(r)dr/j p(r)dr by pair
14 4 distribution



Guinier analysis

. The Guinier approximation is only accurate at low q. How do you pick you
fit endpoints?
—2p2
. It depends on particle shape and size! I(q) = Ipe™1 Rg/3
Need qR, sufficiently small that

Guinier approximation validit . . .
pllo Y this approximation holds

1.0 4 i : —— Guinier Approx.

0-91 ! ! — Sphere . Conventionally, we fit the Guinier

0.8 1 | 1 Thin Rod .

I ! —— Thin Disc region to qR; ~ 1.3

0.7 1
3 l l - This works for globular
c 0.6 ! ! molecules
u 1
3 0.5 | « Rods are fit to gR, ~ 1.0
= I g
>
B g4 : « Guinier region should be fit to as
2 04 .
£ : low g as your data goes

| .
0.3 : - Excluding more than 3-5
' i points at start may mean
qR, = 1.0 i data is bad
| | l »  Need guimR, < 1.0, preferably
00 05 10 15 20 25 30 35 40 GminRy < 0.65



Guinier analysis

. How do we do a Guinier fit?

1. Guess a starting maximum q value for fit

2. Calculate Guinier fit and get Rg

3. If gmaxRy > 1.3 (or 1.0) reduce maximum q. If gneRy; < 1.3 (or 1.0) increase the
maximum q

4. Repeat steps 2 and 3 until you converge on a final maximum g

. Minimum q should be lowest available q point

o @® Guinier Fit
- Criteria for a good Guinier fit: e L
. qminRgy < 0.65 i
. e 2;2;?8 qmin*Rg < 0.65
. qmaxRy = 1.3 (globular/disc) or gpeR; = 1.0 = = qmax*Rg ~ 1.3
(extended) TRy amackg
* GUinier fit r_eSiquaIS are flat and Uncertainty - 0.0000 00002 0.0004 0.0006 0.0008 0.0010 00012 0.0 01 0.0016
randomly distributed
. Fit extends to lowest available q point 2
(or very close) coni . /\/\
G ot by LML, A :
g VVVV\/ \JVV \/
. If unsure about particle shape, start Fit to the lowest _
. . available q point™ Residuals flat and randomlyO T
with q,,..R; = 1.3, decrease to 1.0 if distributed about zero

A€ QA=

residuals not flat



Guinier analysis

 Non-linearities in Guinier analysis are indicative of
problems with your sample
Aggregation causes a characteristic upturn at low q

« Could be caused by aggregates in the sample, or by
radiation induced aggregation (radiation damage)

-—1(0) .
. 7 No ageresation . . Aggregation that may
= ggreg = = be ameliorated
éb R i%.b Eb s %
; "::}'7’.1’.1., ;‘ ; R qRg limit=1-3
& « & &
g qRg limit = 1-3 é’ ié
0-000 0002 0-004 0-000 0002 0004 0000 0-002 0-004
I ) 2 2.2 2,22
q (A7) q (A7) q (A7)

Downturns at low g are
characteristic of structure
factor, also show up in a
Guinier fit

e Images from Putnam et

Intensity (log scale)

igﬁﬂ o al. Quarterly reviews of
Infinite dilution biophysics, 40(3) 2007.
0-05 0-10
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Guinier analysis

Fit residual can help you see problems
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Infl(q))

Aln(l(q))
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Guinier analysis

Fit residual can help you see problems

Guinier
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Guinier analysis summary

« Guinier analysis sensitive to low g

« Most problems with your data will show up here!
. Aggregation
. Radiation damage
. Interparticle interactions
. Some buffer subtraction issues

« Guinier region should be linear, with flat fit residuals

. Upturn in profile or residuals usually aggregation
. Downturn in profile or residuals usually repulsion

- Gives R;, informs on particle size

« Gives I(0), informs on particle mass



Molecular weight analysis



Molecular weight estimates from SAXS are ~10% accurate at
best

. Don't rely on SAXS to determine MW of system, use another
approach (e.g. MALS)

Use SAXS MW to verify state of macromolecule in solution

. Oligomeric state

. Is the sample intact

. Is the complex formed

. Important to verify what’s in solution is what you’re expecting

Six different methods supported for calculating MW

. Two concentration dependent methods (not useful for SEC-SAXS)
. Four concentration independent methods
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E=sam Molecular weight from SAXS

1. I(0) in absolute units (water/glassy carbon standard)
Scattering intensity actually has “absolute” units of cm! when
properly calibrated with a known standard such as water. Once I(0) is
expressed in absolute units,

NaI(0)/c
(Apm)?

N, = 6.02 * 1023 ¢ = concentration Ap, = “scattering contrast”

Mol. Wt. =

Reference: Mylonas, E. & Svergun, D. 1. (2007). J. Appl. Cryst. 40,
5245-5249

2. Protein standards
Unknown molecular weights can be determined by comparison with
known protein standards such as lysozyme or glucose isomerase:

1(0)/c
I1(0)std/Cstd

Reference: Mylonas, E. & Svergun, D. 1. (2007). J. Appl. Cryst. 40,
5245-5249

Mol. Wt. = (MWiq)



BioCAT —

E=sam Molecular weight from SAXS

1. I(0) in absolute units (water/glassy carbon standard)
Scattering intensity actually has “absolute” units of cm! when

properly calibrated with a known standard such as water. Once I(0) is

expressed in absolute units,

N, = 6.02 * 1023 ¢ = concentration Ap, = “scattering contrast”

NaI(0)/c

Mol. Wt. =
(App)?

Refere
S5245-

Both of these methods require accurate
concentration measurements!

2. Protein standards

Unknown molecular weights can be determined by comparison with

known protein standards such as lysozyme or glucose isomerase:

Reference: Mylonas, E. & Svergun, D. 1. (2007). J. Appl. Cryst. 40,

_ I(0)/c
Mol. Wt. = O era/owen (MWgtq)

5245-5249




e Molecular weight from SAXS

3. Porod volume methods
Mass (in kDa) can calculated as the density times the volume of the particle.
The Porod volume of the particle is used, and is calculated:

= 2121(0)/ j 21(q)dg

The density used is typically 0.83*10-3 kDa//S\3 but can be adjusted for the
particular application.

More advanced techniques based on this idea can be relatively accurate
Reference: Fischer et al. (2009). J. Appl. Cryst., 43, 101-109

4. Volume of correlation method
Molecular weight can be estimated using the empirically relation:

1/k V2 1(0)
MW = (%) where Qp =— and V=
c Rg J qI(q)dq
The values of k and ¢ depend on the type of macromolecule. For proteins k = 1
and ¢ = 0.1231, for RNA k = 0.808 and ¢ = 0.00934.
Reference: Rambo and Tainer (2013). Nature, 496, 477-481
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E=sam Molecular weight from SAXS

5. Comparison to known structures method (Shape&Size)

A machine learning method that categorizes SAXS data into shape categories
based on comparison to a catalog of known structures from the PDB. By finding
the nearest structures in shape and size, it then estimates the MW of the
sample. Implemented in the ATSAS package.

Reference: Franke, D., Jeffries, C. M. & Svergun, D. 1. (2018). Biophys. J. 114,
2485-2492. DOI: 10.1016/j.bpj.2018.04.018

6. Bayesian inference method

A Bayesian inference method for calculating the M.W. The method calculated the
M.W. using the Porod volume, volume of correlation, and comparison to known
structures (methods 3-5) for a large set of theoretical scattering profiles. A
probability distribution was created for each method that describes the
probability of obtaining a particular calculated M.W. based on the true M.W.

For an input protein, the M.W. by methods 3-5 is calculated as evidence.
Bayesian methods are then used to combine the prior probability distributions
from the theoretical scattering profiles to calculate the most likely M.W. of the
sample.

Reference: Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. (2018).
Sci. Rep. 8, 7204. DOI: 10.1038/s41598-018-25355-2



e Molecular weight from SAXS

5. Comparison to known structures method (Shape&Size)
A machine learning method that categorizes SAXS data into shape categories
based on comparison to a catalog of known structures from the PDB. By finding
the nearest structures in shape and size, it then estimates the MW of the
sample. Implemented in the ATSAS package.

Reference: Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). Biophys. J. 114,
2485-2492 DOT:- 10.1016/i.bni.2018.04.018

Methods 3-6 do not rely on the concentration of the sample, making them
useful as checks for methods 1 and 2, and in cases where the concentration
may not be known (such as SEC- SAXS)

M. W using the Porod volume, volume of correlatlon and comparison to known
structures (methods 3-5) for a large set of theoretical scattering profiles. A
probability distribution was created for each method that describes the
probability of obtaining a particular calculated M.W. based on the true M.W.

For an input protein, the M.W. by methods 3-5 is calculated as evidence.
Bayesian methods are then used to combine the prior probability distributions
from the theoretical scattering profiles to calculate the most likely M.W. of the
sample.

Reference: Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. (2018).
Sci. Rep. 8, 7204. DOI: 10.1038/s41598-018-25355-2



Molecular weight from SAXS

Each method fails in different ways

Absolute scale - Requires accurate calculation of macromolecule contrast, partial specific
volume. Depends on accuracy of concentration, absolute scale calibration

Reference to known standard: Reference standard must be in a buffer with similar contrast as
your sample. Depends on accuracy of concentration for both reference and your sample

Porod volume: Works best for compact, globular, rigid molecules. Requires accurately
knowing the macromolecule density.

Volume of correlation: Fails for protein-nucleic acid complexes. Reqwres the integral to
converge. Sensitive to noisy high g data. Fails for molecules < 20 kD

Comparison to known structures: Only works for proteins. Doesn’t work for flexible systems.

Bayesian inference: Only works for proteins.

All methods will fail if your Guinier fit is bad

Integral methods are sensitive to accurate background subtraction



Molecular weight in SAXS

Be aware of different failure modes

Use the method(s) that should work best for your data,
not the one that best matches your expectations

Verify that MW matches expected oligomeric state

If MW doesn’t match expected, don’t assume you know
what’s going on. Could be an error in MW calculation,
could be a sample problem.

« Test with another method (e.g. MALS)



Porod and Kratky analysis



Porod Analysis

Objects with sharp boundaries, like
ideal spheres, have scattering that
follow Porod’s law at wide angles:

I(g)ocqg ™ with gR > 1
Slope = -4

= R = 150 Angstrom
R = 15 Angstrom

1015 .

10234 .

1011 i

109 i

I(q)

107_
More generally: I(q) < ¢~P

105 1 D is the Porod exponent
1034 Hard sphere: I(q) x qg~*
Rod: I(q) «x q~3
101 Disc: I1(q) « q~2
10-3 To-2 1o Toe Unfolded ‘random \(valk' polymer: I(q) o« g2
q Fully extended chain: 1(q) x g7t

« The Porod exponent can be interpreted in terms of particle shape and porosity
(usually for materials)

« Be careful: Law breaks down at higher q due to shape, hydration effects



Kratky analysis

Unfolded proteins have Porod exponents near 2,
folded generally near 4 (if globular)

1-0 - ‘ .
_ Unfolded Kratky plot:
PSS G qz 1(q) Vs q
Partially unfolded ;5.
N Extended ‘‘‘‘‘‘‘‘‘‘
200 e
B N\ 7~y ”‘rf\x' FOlded 1.5 e
0-0 ' S g Unfolded
0-0 0-1 o0-12 0-3 S,
q(A™)
0.5 -
Image from Putnam et al. Quarterly reviews Hard sphere
of biophysics, 40(3) 2007. 00 - .- — -

q

0.5



Kratky analysis

Problem: Kratky plot depends on size of an object,

scaling of scattering profiles
Kratky Solution: normalize by R; and I(0)

— Glucose lsomerase, Ry =327 Dimensionless Kratky plot:
—— Lysozyme, Rg=14.3A 2
(qR;)"1(q)/1(0) vs. qR,

Dimensionless Kratky

q*1(q)

(qR,)’1(q)/1(0)

qRy



Kratky analysis

Globular particles all have the same shape.
Deviations inform on flexibility/extendedness

2.5 . | . |
Globular particles have a

~EEAl Comple_te_|z _u_ntold_efl_ maximum of 1.1 at qRr, = V3 = 1.73
% 1.5 1 An ideal random chain rises to a
mf plateau of 2
™ 1 i
> A fully extended chain

0.5 1 continues to slope upward

0 | | without a plateau (not shown)

6 8 10

Image from Durand et al. J. Struct. Biol. 169, 2010

Shifts in peak location to the right of 1.73, or a partial plateau, indicate more
flexibility or extension in a system. Changes in shape are directly comparable
because the curves are dimensionless (no size effects).



Kratky analysis

Kratky plots inform on flexibility and shape

Kratky plots are relatively insensitive to a small
amount of aggregates or radiation damage

- Dimensionless Kratky plots depends on Ry, I(0)
from Guinier, very sensitive to aggregates

Kratky plots are extremely sensitive to buffer
subtraction issues

Dimensionless Kratky plots can provide semi-
quantitative assessment of flexibility and shape



Indirect Fourier
transforms



Indirect Fourier Transform
(IFT)

. By performing a Fourier transform on the scattering profile we can obtain
real space information about the macromolecule

D
max sin(gr sin(gr
=t [ P e > )= [ 0™
0
Pair Distance Distribution Function
v o Data = Dmax =94
10° 1 Y — P(n) IFT

0.0030

0.0025 A

10-1 4
0.0020 A

I(a)

P(r)

0.0015 A

1072 4

0.0010 A

0.0005 -

10~ 4

0.05 0.10 0.15 0.20 0.0000 . , , .
0 20 ) 0 80
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&=sa Physical interpretation of P(r)

P(r) is the histogram of all possible pairs of electrons:
the pair distance distribution function

100000

[}

O

[

9—) 80000 | i

5 shoulder due

S to pair of

qc_> 60000 |- domains

o

>~

= !

] 40000 .

-]

O

[O)

|-

LC 20000 | || |I“ 1

o_lll‘ ) ‘lllll ------- j
1TIM.pdb 10 20 30 40 50 60 70 80
Distance between points T
max_

maximum
dimension
of object

Images from Richard Gillilan’s BioSAXS Essentials talk
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e Physical interpretation of P(r)

The shape of the P(r) function can tell you
a lot about the shape of your particle

. Solid sphere

@D )  Rod

Thin Disc

Hollow sphere

Dumbbell

Images from Svergun & Koch, Reports on the progress of physics, 66, 2003.
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s Physical interpretation of P(r)

The shape of the P(r) function can tell you
a lot about the shape of your particle

1-0 - — Unfolded protein

—— Multidomain protein

— Globular protein

0-0

0) 30 60 90 120
r(A)

Image from Putnam et al. Quarterly reviews

of biophysics, 40(3) 2007.
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g=sam Physical interpretation of P(r)

The P(r) function can be used to calculate
the R, and 1(0) values of the curve.

« Uses entire curve
« Automatic extrapolation to g =0

« Especially useful for large particles with
small Guinier regions and for noisy data

« Good check against Guinier analysis

fODmax r?2P(r)dr Dmax

2 _ _
Rg = , fODm“xP(r)dr [(0) =4n fo P(r)dr




How to calculate a P(r)
function

Why can’t you directly do a Fourier transform (why the I in IFT)?

2 (oo :
PI) =5 | 1@ e

The finite extent of our measurement (and measurement noise) means that a

direct Fourier transform distorts the true P(r) function. You get ‘truncation
artifacts’.

We calculate P(r) functions somewhat backward:
. Pick @ D,

. o Pmax Sm(qr)
. Calculate the best fit P(r) function with that D,.,  I(q) = 4m P(r)
. Check if the P(r) function makes sense 0

You generate a P(r) with a given D,,,, by fitting against the data

. Fitting criteria include both *fit’ (x?) and ‘regularization’ parameters
Regularization include ‘perceptual’ criteria such as
Smoothness of the P(r)

Stability of the solution when changing parameter weighting
Positivity of the solution



How to calculate a P(r)
function

Most commonly we use a program called GNOM to do
the IFT, though others exist.

. Requires estimate of D,,,, for IFT
R GNOM
Filename
glucose_isomerase.dat P(r)
. Criteria for judging a good D,... based on e
. g_min n_min g_max n_max 0.00008
P(r) function: 0001 0 Hici0283 1478 IR 00006 Goes smoothly to
Dmax: 103 . Alpha (0=auto): 0.0 C
. P(r) falls gradually to zero at D, e EEE ZOTQ L Lima
. Underestimated D,,,, has an abrupt descent Cut to q_max=8/Rg (damifn) \C
. . . Change Advanced Parameters 0.00000 77— e \
. OB/ergstlmated D,... usually shows oscillation Rg and I(0) agree ‘Always positive & B 160
about zero w for Guinier, P(r) DatayFit

Rg (A) 10

. Additional P(r) criteria:

Guinier :

33.6078

0.0612

. P(r) goes to zero at r=0 and r=Dmax Guinier Err. : | 0.2301 2.76E-04 10

. 33.6200 0.0614 B 4
. The transform of P(r) fits your data 213E-04 o .

10- .
i Usually true: A L Residuals mostly flat and
GNOM savs : a FXCFI | FNT enlitinn ! - -
. R, and I1(0) from Guinier and P(r) should wsGood total estimate mRndomlydisinbuted
agree well (except for flexible systems) and chi?2 » Y . .

. P(r) function is always positive (except for

proteins in lipid systems)

. Even for good data, uncertainty in HouTocte o el A EF Q= B

determining D, can be >10%




How to calculate a P(r)
function

«  Criteria for judging a good D,,,, based on P(r) function:

. P(r) falls gradually to zero at D,
. Underestimated D,,,, has an abrupt descent
. Overestimated D,,,, usually shows oscillation about zero

s Dpax = 83 A D,.. =83 A
Dmax =103 A
m— D)o = 123 A Dmax — 103 A
Doy =123 A
S S
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_ - -~
T T T T T T T T T L T T
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How to calculate a P(r)
function

My usual approach (using GNOM in RAW):

1.

2.

o

Open the GNOM interface. It defaults to what RAW
thinks is a reasonable D, .,

Selt the D,,,, value to 2-3 times larger than the initial
value

Look for where the P(r) function drops to O naturally. Set
the D,,,, value to this point

Turn off the force to zero at D,,,, condition

Tweak D,,,, up and down until it naturally goes to zero
(with the force to zero turned off)

Turn the force to zero at D,,,, condition back on

If you have good quality data, this ought to produce a
good P(r) function



How to calculate a P(r)
function

Pair Distance Distribution Function
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o Data max
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Aggregation and the P(r)

When doing an IFT, if you are unable to find a
reasonable D,,,,, may indicate aggregation

— Glucose Isomerase, w/ aggreation

0.00010 — Glucose Isomrease, no aggregation
0.00008
T
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0.00004
0.00002 A
0.00000 ¥ v T t
0 50 300 400
r



P(r)/1(0) [Arb.]

Interparticle interference and
P(r)

Interparticle interference that leads to a downturn in the low
g (repulsion) leads to an artificially small D,

If extended, P(r) function will show characteristic dip below O
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The P(r) function

 Provides real space structural information about
the shape of the macromolecule

 Provides an estimate of D,,,,, and potentially
more accurate determination of R, and I(0)

« Sensitive to aggregation and interparticle
interference

 Generally required before moving on to more
advanced analysis



Summary



Summary of data validation
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e Guinier fit will show most issues

 P(r) function good for catching aggregation,
interparticle interference

« MW validates what you have in solution
« Use appropriate method(s)

« Kratky plot particularly sensitive to background
subtraction

« Dimensionless Kratky sensitive to issues with
Guinier fit



Summary of data analysis

Guinier plot gives estimates of R, and 1(0)
. Sensitive to data quality issues

MW is relatively unreliable from SAXS, but required to validate what
state/sample you have in solution

. Pick the right calculation method

Kratky and dimensionless Kratky plots provide analysis of flexibility and
shape

P(r) function provides real space shape information, estimate of D,,,,, and
potentially more accurate determination of R, and 1(0)

. Also sensitive to data quality issues

P(r) is generally required before moving to advanced analysis techniques



