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Scattering from a single 
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Difference in path length = phase shift
Incoming plane waves

Far-field diffraction pattern

Waves scattered from different parts of the molecule 
result in phase shifts – a speckled intensity pattern on 
detector
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Scattering from molecules in 
solution
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Since molecules are far apart in dilute solutions, the 
idealized scattering pattern of the solution is the same as 
the scattering pattern for a single rotationally-averaged 
molecule. 

Images from Richard Gillilan’s BioSAXS Essentials presentation

Difference in path length = phase shift
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The scattering profile

The scattering profile is the intensity as a 
function of “q”, the special reciprocal space 
coordinate that is proportional scattering 
angle at small angles.  I(q) 

sample D (sample-to-detector distance) Intensity

q

ϕ

q

q = 4π sin θ( ) / λ (∝θ for small θ) I(q) is obtained by 
integrating around the 
circle. For detectors, the 
standard deviation of 
signal σ(q) is also 
calculated. 

2𝜃!

Slide from Richard Gillilan’s BioSAXS 
Essentials presentation



The scattering profile

𝐼(𝑞) – Experimental intensity

𝑀 – molecular weight

𝑐 – concentration

𝜌 – scattering density (electrons per unit volume)

𝜌# - particle

𝜌$ - solvent

𝐹(𝑞) – Form factor, i.e. molecular shape

𝑆(𝑞) – Structure factor, i.e. inter-molecular interaction

≈ 1 for dilute solutions

𝐼(𝑞) ∝ 𝑀𝑐 𝜌! − 𝜌" " 𝐹 𝑞 "𝑆(𝑞)



A typical SAXS experiment
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Summary of basic reduction

• Data is collected as 2D images

• 2D images are radially averaged to 1D scattering profiles, 
I(q)

• Multiple profiles collected for both sample and buffer are 
averaged

• Averaged buffer profile is subtracted from averaged sample 
profile to create a single subtracted scattering profile

• This subtracted scattering profile is the basic data form in 
SAXS



Summary of the scattering 
profile

• I(q)

• Scattering profile exists in reciprocal space, q has units of 
1/distance (usually 1/Å or 1/nm)
• Big things scatter more at low q, small things more at high q
• Low q contains overall size and shape, mid to high q contain finer 

structure (tertiary, secondary structure)

• Scattering profile represents the scattering from a 
rotationally averaged macromolecule in solution

• q dependence in scattering profile comes from molecular 
shape and molecular interactions
• Important to eliminate interactions to learn about shape



Plotting the scattering profile

Same profile, three different plots

Lin-lin Log-lin Log-log



Plotting the scattering profile

Same profile, three different plots

Lin-lin Log-lin Log-log

Profile covers 3-4 orders of magnitude. A linear y axis hides significant features

Log-lin emphasizes mid to high q (shape), log-log emphasizes low q (size)



What can go wrong with 
your data



What can go wrong with your 
data

• Poor quality sample
• Aggregates or unexpected oligomers in solution
• Oligomeric state doesn’t match expectations
• Complex didn’t form

• Radiation damage
• Unexpected time dependent changes in the measured profile
• Usually manifests as time dependent aggregation

• Concentration effects (structure factor)
• Concentration dependent changes in the measured profile
• Upturn (attraction) or downturn (repulsion) at low q

• Bad buffer subtraction
• Bad buffer match
• Capillary fouling
• Profile going negative at high q or low q (over subtraction)
• Profile offset at high q, uptick at low q (under subtraction)



Aggregation



Radiation damage



Interparticle Interaction



Interparticle Interactions
Interparticle Interactions
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Subtraction errors



Importance of data validation

• SAXS is a low information content measurement

• Even ‘bad’ SAXS samples provide signal
• SAXS samples should be homogeneous and monodisperse

• Because you always get a result, and because it’s easy to overfit SAXS 
data, validating that you have measured good data is extremely 
important

• Basic analysis methods for SAXS both verify data quality and provide 
useful information on the system
• Guinier fit
• M.W. calculation
• Porod/Krakty plots
• IFT/P(r) function



Guinier analysis



Guinier analysis

• As 𝑞 → 0, intensity can be approximated by:

𝐼 𝑞 = 𝐼(0)𝑒#$"%#"/'

• Rg - radius of gyration (size)
• I(0) - scattering at zero angle (M.W related)

• Plot log 𝐼 vs. 𝑞!: slope = −𝑅"!/3, intercept = log 𝐼 0
• Fit the Guinier region to find these parameters

Guinier region



Guinier analysis

• Radius of gyration:
• RMS distance from center of mass

Useful definitions of Rg
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Guinier analysis

• The Guinier approximation is only accurate at low q. How do you pick you 
fit endpoints?
• It depends on particle shape and size! 𝐼 𝑞 = 𝐼)𝑒*+

",#"/.

Need 𝑞𝑅! sufficiently small that 
this approximation holds

𝑞𝑅! = 1.3𝑞𝑅! = 1.0

• Conventionally, we fit the Guinier 
region to 𝑞𝑅$ ≈ 1.3
• This works for globular 

molecules

• Rods are fit to 𝑞𝑅$ ≈ 1.0

• Guinier region should be fit to as 
low q as your data goes
• Excluding more than 3-5 

points at start may mean 
data is bad

• Need 𝑞%&'𝑅$ < 1.0, preferably 
𝑞%&'𝑅$ < 0.65



Guinier analysis

• How do we do a Guinier fit?
1. Guess a starting maximum q value for fit
2. Calculate Guinier fit and get Rg
3. If 𝑞𝑚𝑎𝑥𝑅! > 1.3 (or 1.0) reduce maximum q. If 𝑞𝑚𝑎𝑥𝑅! < 1.3 (or 1.0) increase the 

maximum q
4. Repeat steps 2 and 3 until you converge on a final maximum q

• Minimum q should be lowest available q point

• Criteria for a good Guinier fit:
• 𝑞%&'𝑅! < 0.65
• 𝑞𝑚𝑎𝑥𝑅! ≈ 1.3 (globular/disc) or 𝑞𝑚𝑎𝑥𝑅! ≈ 1.0

(extended)
• Guinier fit residuals are flat and 

randomly distributed
• Fit extends to lowest available q point 

(or very close)

• If unsure about particle shape, start 
with 𝑞𝑚𝑎𝑥𝑅! ≈ 1.3, decrease to 1.0 if 
residuals not flat



Guinier analysis

• Non-linearities in Guinier analysis are indicative of 
problems with your sample

Aggregation causes a characteristic upturn at low q
• Could be caused by aggregates in the sample, or by 

radiation induced aggregation (radiation damage)

Downturns at low q are 
characteristic of structure 
factor, also show up in a 
Guinier fit Images from Putnam et 

al. Quarterly reviews of 
biophysics, 40(3) 2007.



Guinier analysis

• Fit residual can help you see problems

Monodisperse

Aggregated

Upturn (‘smile’)

Flat



Guinier analysis

• Fit residual can help you see problems

Monodisperse
Repulsive
(structure factor)

Downturn (‘frown’)Flat



Guinier analysis summary

• Guinier analysis sensitive to low q

• Most problems with your data will show up here!
• Aggregation
• Radiation damage
• Interparticle interactions
• Some buffer subtraction issues

• Guinier region should be linear, with flat fit residuals
• Upturn in profile or residuals usually aggregation
• Downturn in profile or residuals usually repulsion

• Gives 𝑅,, informs on particle size

• Gives 𝐼(0), informs on particle mass



Molecular weight analysis



Molecular weight from SAXS

• Molecular weight estimates from SAXS are ~10% accurate at 
best
• Don’t rely on SAXS to determine MW of system, use another 

approach (e.g. MALS)

• Use SAXS MW to verify state of macromolecule in solution
• Oligomeric state
• Is the sample intact
• Is the complex formed
• Important to verify what’s in solution is what you’re expecting

• Six different methods supported for calculating MW
• Two concentration dependent methods (not useful for SEC-SAXS)
• Four concentration independent methods



Molecular weight from SAXS

1. I(0) in absolute units (water/glassy carbon standard)
Scattering intensity actually has “absolute” units of cm-1 when 
properly calibrated with a known standard such as water. Once I(0) is 
expressed in absolute units, 

𝑁/ = 6.02 ∗ 10". 𝑐 = concentration   Δ𝜌& = “scattering contrast”

Reference: Mylonas, E. & Svergun, D. I. (2007). J. Appl. Cryst. 40, 
S245-S249

2. Protein standards
Unknown molecular weights can be determined by comparison with 
known protein standards such as lysozyme or glucose isomerase:

Reference: Mylonas, E. & Svergun, D. I. (2007). J. Appl. Cryst. 40, 
S245-S249

Mol. Wt. = :-;(<)/>
?@. /

Mol. Wt. = ;(<)/>
; < 012/>012

(𝑀𝑊ABC)



Molecular weight from SAXS

1. I(0) in absolute units (water/glassy carbon standard)
Scattering intensity actually has “absolute” units of cm-1 when 
properly calibrated with a known standard such as water. Once I(0) is 
expressed in absolute units, 

𝑁/ = 6.02 ∗ 10". 𝑐 = concentration   Δ𝜌& = “scattering contrast”

Reference: Mylonas, E. & Svergun, D. I. (2007). J. Appl. Cryst. 40, 
S245-S249

2. Protein standards
Unknown molecular weights can be determined by comparison with 
known protein standards such as lysozyme or glucose isomerase:

Reference: Mylonas, E. & Svergun, D. I. (2007). J. Appl. Cryst. 40, 
S245-S249

Mol. Wt. = :-;(<)/>
?@. /

Mol. Wt. = ;(<)/>
; < 012/>012

(𝑀𝑊ABC)

Both of these methods require accurate 
concentration measurements!



Molecular weight from SAXS

3. Porod volume methods
Mass (in kDa) can calculated as the density times the volume of the particle. 
The Porod volume of the particle is used, and is calculated:

The density used is typically 0.83*10-3 kDa/Å3, but can be adjusted for the 
particular application.

More advanced techniques based on this idea can be relatively accurate
Reference: Fischer et al. (2009). J. Appl. Cryst., 43, 101-109

4. Volume of correlation method
Molecular weight can be estimated using the empirically relation:

The values of k and c depend on the type of macromolecule. For proteins k = 1 
and c = 0.1231, for RNA k = 0.808 and c = 0.00934.
Reference: Rambo and Tainer (2013). Nature, 496, 477-481

where and

𝑉 = 2𝜋3𝐼(0)/.
4

5
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MW = 6"
7

8/:
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𝑉73

𝑅,
𝑉7 =

𝐼(0)
∫ 𝑞𝐼 𝑞 𝑑𝑞



Molecular weight from SAXS

5. Comparison to known structures method (Shape&Size)
A machine learning method that categorizes SAXS data into shape categories 
based on comparison to a catalog of known structures from the PDB. By finding 
the nearest structures in shape and size, it then estimates the MW of the 
sample. Implemented in the ATSAS package.

Reference: Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). Biophys. J. 114, 
2485–2492. DOI: 10.1016/j.bpj.2018.04.018

6. Bayesian inference method
A Bayesian inference method for calculating the M.W. The method calculated the 
M.W. using the Porod volume, volume of correlation, and comparison to known 
structures (methods 3-5) for a large set of theoretical scattering profiles. A 
probability distribution was created for each method that describes the 
probability of obtaining a particular calculated M.W. based on the true M.W. 

For an input protein, the M.W. by methods 3-5 is calculated as evidence. 
Bayesian methods are then used to combine the prior probability distributions 
from the theoretical scattering profiles to calculate the most likely M.W. of the 
sample.

Reference: Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). 
Sci. Rep. 8, 7204. DOI: 10.1038/s41598-018-25355-2



Molecular weight from SAXS

5. Comparison to known structures method (Shape&Size)
A machine learning method that categorizes SAXS data into shape categories 
based on comparison to a catalog of known structures from the PDB. By finding 
the nearest structures in shape and size, it then estimates the MW of the 
sample. Implemented in the ATSAS package.

Reference: Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). Biophys. J. 114, 
2485–2492. DOI: 10.1016/j.bpj.2018.04.018

6. Bayesian inference method
A Bayesian inference method for calculating the M.W. The method calculated the 
M.W. using the Porod volume, volume of correlation, and comparison to known 
structures (methods 3-5) for a large set of theoretical scattering profiles. A 
probability distribution was created for each method that describes the 
probability of obtaining a particular calculated M.W. based on the true M.W. 

For an input protein, the M.W. by methods 3-5 is calculated as evidence. 
Bayesian methods are then used to combine the prior probability distributions 
from the theoretical scattering profiles to calculate the most likely M.W. of the 
sample.

Reference: Hajizadeh, N. R., Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). 
Sci. Rep. 8, 7204. DOI: 10.1038/s41598-018-25355-2

Methods 3-6 do not rely on the concentration of the sample, making them 
useful as checks for methods 1 and 2, and in cases where the concentration 
may not be known (such as SEC-SAXS).



Molecular weight from SAXS

• Each method fails in different ways
• Absolute scale – Requires accurate calculation of macromolecule contrast, partial specific 

volume. Depends on accuracy of concentration, absolute scale calibration

• Reference to known standard: Reference standard must be in a buffer with similar contrast as 
your sample. Depends on accuracy of concentration for both reference and your sample

• Porod volume: Works best for compact, globular, rigid molecules. Requires accurately 
knowing the macromolecule density.

• Volume of correlation: Fails for protein-nucleic acid complexes. Requires the integral to 
converge. Sensitive to noisy high q data. Fails for molecules ≲ 20 kDa.

• Comparison to known structures: Only works for proteins. Doesn’t work for flexible systems.

• Bayesian inference: Only works for proteins.

• All methods will fail if your Guinier fit is bad

• Integral methods are sensitive to accurate background subtraction



Molecular weight in SAXS

• Be aware of different failure modes

• Use the method(s) that should work best for your data, 
not the one that best matches your expectations

• Verify that MW matches expected oligomeric state

• If MW doesn’t match expected, don’t assume you know 
what’s going on. Could be an error in MW calculation, 
could be a sample problem.
• Test with another method (e.g. MALS)



Porod and Kratky analysis



Porod Analysis

Objects with sharp boundaries, like 
ideal spheres, have scattering that 
follow Porod’s law at wide angles:

𝐼 𝑞 ∝ 𝑞34 𝑞𝑅 ≫ 1with

Slope = -4

Hard sphere:                              𝐼(𝑞) ∝ 𝑞*0
Rod: 𝐼 𝑞 ∝ 𝑞*.
Disc: 𝐼 𝑞 ∝ 𝑞*"
Unfolded ‘random walk’ polymer: 𝐼(𝑞) ∝ 𝑞*"
Fully extended chain:                  𝐼(𝑞) ∝ 𝑞*1

• The Porod exponent can be interpreted in terms of particle shape and porosity 
(usually for materials)

• Be careful: Law breaks down at higher q due to shape, hydration effects

q

More generally: 𝐼 𝑞 ∝ 𝑞*2
𝐷 is the Porod exponent



Kratky analysis

Unfolded proteins have Porod exponents near 2, 
folded generally near 4 (if globular)

Kratky plot:
𝑞F𝐼 𝑞 vs 𝑞

Image from Putnam et al. Quarterly reviews 
of biophysics, 40(3) 2007.
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Kratky analysis

Problem: Kratky plot depends on size of an object, 
scaling of scattering profiles

Solution: normalize by 𝑅! and 𝐼(0)

Dimensionless Kratky plot:
𝑞𝑅!

"𝐼(𝑞)/𝐼(0) vs. 𝑞𝑅!

𝑞𝑅!

𝑞𝑅
!

" 𝐼
(𝑞
)/
𝐼(
0)

Dimensionless Kratky

Kratky

𝑞

𝑞"
𝐼(
𝑞)



Kratky analysis

Globular particles all have the same shape. 
Deviations inform on flexibility/extendedness

certain compactness due to the presence of structured regions of
significant size. More specifically, it does not provide a clear means
of distinguishing between such objects and fully folded proteins.

To obviate some of these limitations and thereby enrich the
information content of the data, one of us (J. Pérez) suggested
the use of a dimensionless plot in which (qRg)2I(q)/I(0) is displayed
as a function of qRg. Multiplying q by the radius of gyration of the
protein makes the angular scale independent of the protein size,
while the same result is obtained for the intensity curve by scaling
to I(0) – indeed I(0) is proportional to the molecular mass of the
protein. The use of such ‘‘reduced” or dimensionless coordinates
is commonplace in polymer or materials science but rare in studies
of biological macromolecules (Lairez et al., 2003). This dimension-
less plot is a quick and easy means of obtaining information on the
conformation of a monomeric protein, before using more sophisti-
cated modelling tools. In particular, it answers the question as to
whether the protein is fully structured, presents only structured
domains or is close to a completely unfolded chain.

The scattering pattern of a globular protein follows Guinier’s
law I(q) = I(0) exp (!(qRg)2/3). The corresponding dimensionless
Kratky plot exhibits a maximum with a value 3 exp (!1) = 1.104
at qRg =

p
3 (Fig. 3). Experimental observations agree with this pre-

dicted behaviour, as all fully folded, monodomain globular proteins
show identical dimensionless Kratky plots with a maximum value
close to 1.1 at qRg " 1.75. In contrast, if we approximate a com-
pletely unfolded protein as an ideal, random chain of point cross-
section, its scattering profile is given by Debye’s law I(q)/
I(0) = 2(x ! 1 + exp (!x))/x2, where x = (qRg)2. In a dimensionless
Kratky plot, the curve rises with increasing angle to plateau at a
constant value of 2. If one takes into account the thickness and
the persistence length (rigidity) of the chain, the plateau vanishes
at high qRg (a few units) and the behaviour depends on the internal
structure of the chain. For moderate qRg any monochain protein
will give a dimensionless Kratky plot intermediate between these
two idealized extreme curves, the plateau at a value of 2 and the
‘‘bell” with a maximum at (

p
3, 1.104). For instance, a protein with

structured domains linked by flexible segments with no specific
three-dimensional organization, will give a bell-shaped curve with
a maximum shifted to higher values of the coordinates.

2.5. p67phox modelling

The conformation in solution of p67phox was modelled ab initio
using the program GASBOR which represents the protein as a chain
of dummy residues (DR) centred at the Ca positions (Svergun et al.,
2001). Starting from a gas-like distribution of DRs inside a sphere
of diameter Dmax, the program condenses this distribution using
a simulated annealing protocol so as to fit the experimental data

under constraints which ensure the chain-like character of the
DRs spatial distribution. Like all Monte-Carlo approaches, GASBOR
does not yield a unique solution. Therefore, several (typically ten)
low-resolution models are determined before being superimposed
using the suite of programs DAMAVER which calculates the nor-
malized spatial discrepancy (NSD) between all pairs of models (Ko-
zin and Svergun, 2001). This allows one, after elimination of
outliers, to select the most typical model defined as the model with
the smallest average NSD to all other models, i.e. that is most sim-
ilar to other models.

A second modelling approach made use of the program BUNCH
that implements a combination of ab initio and rigid-body model-
ling using the high-resolution structures of rigid domains of the
protein when available (Petoukhov and Svergun, 2005). It finds
the optimal positions and orientations of domains and probable
conformations of flexible linkers represented as DR chains that
are attached to the appropriate end of domains. The scattering pat-
tern of the final model was calculated using CRYSOL (Svergun et al.,
1995) with 50 harmonics and compared to the experimental one.

The atomic coordinate files of the four structured domains TPR
(residues 1–203), N-ter SH3 (242–297), PB1 (352–428) and C-ter
SH3 (455–516) were extracted from the Protein Data Bank (Ber-
man et al., 2007) and are 1WM5, 2DMO, 1OEY et 1K4U, respec-
tively. 1WM5 (F. Inagaki and N.N. Suzuki, to be published) was
preferred to 1HH8 (Grizot et al., 2001a) for the structure of the iso-
lated TPR domain as it contains 8 more residues at the C extremity.
Two missing residues (194–195) were modelled using Modloop
(Fiser and Sali, 2003). 1K4U is an NMR structure of the C-ter SH3
domain in complex with the C-terminal region of p47phox (Kami
et al., 2002). Finally, 1OEY corresponds to the PB1 domain of
p67phox in complex with its p40phox counterpart (Wilson et al.,
2003).

Finally, the program EOM (Ensemble Optimized Method, ver-
sion 1.3) describes a flexible molecule in solution, using an ensem-
ble of typically 50 conformations extracted from a very large
(typically 10,000) and assumed exhaustive pool of conformations
(Bernado et al., 2007). The conformer pool is constructed using
the program Pre_bunch originally developed to generate starting
approximations for the program Bunch. Pre_bunch treats domains
as rigid bodies and connects them by self-avoiding linkers, where
the dihedral angles of the linkers in the Ca–Ca space are selected
randomly but biased to comply with the quasi-Ramachandran plot
(Kleywegt, 1997) and the model generated is free from steric
clashes. A genetic algorithm progressively refines the composition
of the ensemble so that the average scattering pattern of the
molecular conformations within the ensemble fits the experimen-
tal data within error bars. The process is repeated typically 100
times and the distribution of structural parameters such as the ra-
dius of gyration and the maximum diameter are calculated and
compared with those derived from the entire starting pool. This
comparison yields some global features of the molecular confor-
mational space as probed by SAXS.

3. Results

3.1. Bioinformatics analysis

p67phox comprises four well-structured domains linked by three
inter-domain sequences corresponding to residues 204–241,
298–351, and 429–454. To determine the ordered or disordered
character of those three linkers, the complete sequence of p67phox

was analysed using a large panel of disorder prediction programs
accessible from the Disprot website (http://www.disprot.org/pre-
dictors.php). All programs predict significant disorder in these
regions. Fig. 4 shows the results obtained with a subset of four
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Fig. 3. Theoretical dimensionless Kratky plots—(qRg)2I(q)/I(0) vs qRg—correspond-
ing to the two extreme cases: globular protein following Guinier law
I(q) = I(0) exp [!(qRg)2/3] (dotted line) and completely unfolded protein described
by an ideal random chain (continuous line; dashes at large q values indicate that, in
this range, the curve behaviour depends on the internal chain structure).

48 D. Durand et al. / Journal of Structural Biology 169 (2010) 45–53

Completely unfolded

Globular

Image from Durand et al. J. Struct. Biol. 169, 2010

Globular particles have a 
maximum of 1.1 at 𝑞𝑅! = 3 ≈ 1.73

An ideal random chain rises to a 
plateau of 2

A fully extended chain 
continues to slope upward 
without a plateau (not shown)

Shifts in peak location to the right of 1.73, or a partial plateau, indicate more 
flexibility or extension in a system. Changes in shape are directly comparable 
because the curves are dimensionless (no size effects).



Kratky analysis

• Kratky plots inform on flexibility and shape

• Kratky plots are relatively insensitive to a small 
amount of aggregates or radiation damage
• Dimensionless Kratky plots depends on Rg, I(0) 

from Guinier, very sensitive to aggregates

• Kratky plots are extremely sensitive to buffer 
subtraction issues

• Dimensionless Kratky plots can provide semi-
quantitative assessment of flexibility and shape



Indirect Fourier 
transforms



Indirect Fourier Transform 
(IFT)

• By performing a Fourier transform on the scattering profile we can obtain 
real space information about the macromolecule
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Physical interpretation of P(r)

P(r) is the histogram of all possible pairs of electrons: 
the pair distance distribution function
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Physical interpretation of P(r)

The shape of the P(r) function can tell you 
a lot about the shape of your particle
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Images from Svergun & Koch, Reports on the progress of physics, 66, 2003. 



Image from Putnam et al. Quarterly reviews 
of biophysics, 40(3) 2007.

Physical interpretation of P(r)

The shape of the P(r) function can tell you 
a lot about the shape of your particle

Many SAXS instruments can adjust the q-range over which data may be collected in one single

exposure. This may be done by adjusting the sample to detector distance, the incident wave-

length, or the offset of the detector relative to the direct beam. Changing the q-range can require

a prohibitive amount of time and one stable and well-calibrated configuration is often required.

Properly choosing beamline geometries to collect the appropriate scattering information is

important. The first consideration is to capture the q-range necessary to accurately determine
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If SAXS data are collected from monodisperse samples without interparticle 
interference, then reconstruction of the solution structure can proceed.

Globular macromolecules have a P(r) function with a single 
peak, while elongated macromolecules have a longer tail at 
large r and can have multiple peaks. The maximum length in 
the particle, Dmax, is the position where the P(r ) function 
returns to zero at large values of r. Disagreements for values 
of RG and I(0) calculated from the P(r ) function and from the 
Guinier plot can indicate small amounts of aggregation that 
primarily affect the low resolution data and the accuracy of the 
Guinier plot.
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To obtain an ideal scattering curve for the entire q-range, 
the scattering profile must be extrapolated to infinite 
dilutions at low resolution (q<0.1 Å–1) and merged with 
the scattering profile for larger angles.  Accurate large 
angle data can be obtained by measuring higher 
concentrations, using longer exposure times, and/or 
decreasing the sample-to-detector distance.
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RG, a measure of the overall 
size of the molecule, can be 
determined from the Guinier 
plot.

Molecular weight from I(0) 
requires a calibration curve and 
can be used to determine 
oligomerization state. This 
can be validated using 
calculation of the excluded 
volume. M
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The Kratky plot identifies unfolded samples.  
Globular macromolecules follow Porod's law and have 
bell-shaped curves. Extended molecules, such as 
unfolded peptides, lack this peak and have a plateau or 
are slightly increasing in the larger q-range.
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Fig. 24.Data extrapolation, merging, and analysis. Proper data analysis as outlined is essential to any further
modeling and interpretation.

256 C. D. Putnam et al.



Physical interpretation of P(r)

The P(r) function can be used to calculate 
the 𝑅, and 𝐼 0 values of the curve.
• Uses entire curve
• Automatic extrapolation to 𝑞 = 0
• Especially useful for large particles with 

small Guinier regions and for noisy data
• Good check against Guinier analysis
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How to calculate a P(r) 
function

Why can’t you directly do a Fourier transform (why the I in IFT)?
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The finite extent of our measurement (and measurement noise) means that a 
direct Fourier transform distorts the true P(r) function. You get ‘truncation 
artifacts’.

We calculate P(r) functions somewhat backward:
• Pick a 𝐷%()
• Calculate the best fit P(r) function with that 𝐷%()
• Check if the P(r) function makes sense

You generate a P(r) with a given 𝐷$%& by fitting against the data
• Fitting criteria include both ‘fit’ (𝜒*) and ‘regularization’ parameters
• Regularization include ‘perceptual’ criteria such as

• Smoothness of the P(r)

• Stability of the solution when changing parameter weighting

• Positivity of the solution
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How to calculate a P(r) 
function

Most commonly we use a program called GNOM to do 
the IFT, though others exist.
• Requires estimate of 𝐷%() for IFT

• Criteria for judging a good 𝐷𝑚𝑎𝑥 based on 
P(r) function:
• P(r) falls gradually to zero at 𝐷𝑚𝑎𝑥

• Underestimated 𝐷𝑚𝑎𝑥 has an abrupt descent
• Overestimated 𝐷𝑚𝑎𝑥 usually shows oscillation 

about zero

• Additional P(r) criteria:
• P(r) goes to zero at 𝑟=0 and 𝑟=𝐷𝑚𝑎𝑥

• The transform of P(r) fits your data

• Usually true:
• 𝑅𝑔 and 𝐼(0) from Guinier and P(r) should 

agree well (except for flexible systems)
• P(r) function is always positive (except for 

proteins in lipid systems)

• Even for good data, uncertainty in 
determining 𝐷𝑚𝑎𝑥 can be >10%



How to calculate a P(r) 
function

• Criteria for judging a good 𝐷𝑚𝑎𝑥 based on P(r) function:
• P(r) falls gradually to zero at 𝐷𝑚𝑎𝑥
• Underestimated 𝐷𝑚𝑎𝑥 has an abrupt descent
• Overestimated 𝐷𝑚𝑎𝑥 usually shows oscillation about zero



How to calculate a P(r) 
function

• My usual approach (using GNOM in RAW):
1. Open the GNOM interface. It defaults to what RAW 

thinks is a reasonable 𝐷>?@
2. Set the 𝐷>?@ value to 2-3 times larger than the initial 

value
3. Look for where the P(r) function drops to 0 naturally. Set 

the 𝐷>?@ value to this point
4. Turn off the force to zero at 𝐷>?@ condition
5. Tweak 𝐷>?@ up and down until it naturally goes to zero 

(with the force to zero turned off)
6. Turn the force to zero at 𝐷>?@ condition back on

• If you have good quality data, this ought to produce a 
good P(r) function



How to calculate a P(r) 
function

IFT



Aggregation and the P(r)

When doing an IFT, if you are unable to find a 
reasonable 𝐷OPQ, may indicate aggregation



Interparticle interference and 
P(r)

• Interparticle interference that leads to a downturn in the low 
q (repulsion) leads to an artificially small 𝐷>?@

• If extended, P(r) function will show characteristic dip below 0



The P(r) function

• Provides real space structural information about 
the shape of the macromolecule

• Provides an estimate of 𝐷OPQ, and potentially 
more accurate determination of 𝑅R and 𝐼(0)

• Sensitive to aggregation and interparticle 
interference

• Generally required before moving on to more 
advanced analysis



Summary



Summary of data validation

Jacques and Trewhella, Protein 
Science Review 2010.



Summary of data validation

• Guinier fit will show most issues

• P(r) function good for catching aggregation, 
interparticle interference

• MW validates what you have in solution
• Use appropriate method(s)

• Kratky plot particularly sensitive to background 
subtraction
• Dimensionless Kratky sensitive to issues with 

Guinier fit



Summary of data analysis

• Guinier plot gives estimates of 𝑅! and 𝐼(0)
• Sensitive to data quality issues

• MW is relatively unreliable from SAXS, but required to validate what 
state/sample you have in solution
• Pick the right calculation method

• Kratky and dimensionless Kratky plots provide analysis of flexibility and 
shape

• P(r) function provides real space shape information, estimate of 𝐷$%&, and 
potentially more accurate determination of 𝑅! and 𝐼(0)
• Also sensitive to data quality issues

• P(r) is generally required before moving to advanced analysis techniques


